Quantifying Outcome Functions of Linear Programs: An Approach Based on Interval-Valued Right-Hand Sides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474011" target="_blank" >RIV/00216208:11320/23:10474011 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Soo1WMAMlb" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Soo1WMAMlb</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10957-023-02311-3" target="_blank" >10.1007/s10957-023-02311-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantifying Outcome Functions of Linear Programs: An Approach Based on Interval-Valued Right-Hand Sides
Popis výsledku v původním jazyce
This paper addresses a linear programming problem with interval right-hand sides, forming a family of linear programs associated with each realization of the interval data. The paper focuses on the outcome range problem, which seeks the range of an additional function-termed the outcome function-over all possible optimal solutions of such linear programs. We explore the problem's applicability in diverse contexts, discuss its connections to certain existing problems, and analyze its computational complexity and theoretical foundations. Given the inherent computational challenges, we propose three heuristics to solve the problem. The first heuristic employs a reformulation-linearization technique (RLT) to obtain an outer approximation of the range of the outcome function. We also present two algorithms-a gradient-restoration-based approach (GI) and a bases inspection method (BI)-for computing an inner approximation of the range. Computational experiments illustrate the competitive advantage of our proposed approaches versus off-the-shelf solvers. The GI and BI methods present promising results in finding a cheap but tight inner approximation, while the performance of the RLT technique decreases as problem size and uncertainty increase.
Název v anglickém jazyce
Quantifying Outcome Functions of Linear Programs: An Approach Based on Interval-Valued Right-Hand Sides
Popis výsledku anglicky
This paper addresses a linear programming problem with interval right-hand sides, forming a family of linear programs associated with each realization of the interval data. The paper focuses on the outcome range problem, which seeks the range of an additional function-termed the outcome function-over all possible optimal solutions of such linear programs. We explore the problem's applicability in diverse contexts, discuss its connections to certain existing problems, and analyze its computational complexity and theoretical foundations. Given the inherent computational challenges, we propose three heuristics to solve the problem. The first heuristic employs a reformulation-linearization technique (RLT) to obtain an outer approximation of the range of the outcome function. We also present two algorithms-a gradient-restoration-based approach (GI) and a bases inspection method (BI)-for computing an inner approximation of the range. Computational experiments illustrate the competitive advantage of our proposed approaches versus off-the-shelf solvers. The GI and BI methods present promising results in finding a cheap but tight inner approximation, while the performance of the RLT technique decreases as problem size and uncertainty increase.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-11117S" target="_blank" >GA22-11117S: Globální analýza citlivosti a stabilita v optimalizačních úlohách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Optimization Theory and Applications
ISSN
0022-3239
e-ISSN
1573-2878
Svazek periodika
199
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
38
Strana od-do
955-992
Kód UT WoS článku
001099492300002
EID výsledku v databázi Scopus
2-s2.0-85176106671