Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A note on the Hamiltonian structure of transgression forms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475034" target="_blank" >RIV/00216208:11320/23:10475034 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=C31m5eiXbl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=C31m5eiXbl</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/JHEP12(2023)190" target="_blank" >10.1007/JHEP12(2023)190</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A note on the Hamiltonian structure of transgression forms

  • Popis výsledku v původním jazyce

    By incorporating two gauge connections, transgression forms provide a generalization of Chern-Simons actions that are genuinely gauge-invariant on bounded manifolds. In this work, we show that, when defined on a manifold with a boundary, the Hamiltonian formulation of a transgression field theory can be consistently carried out without the need to implement regularizing boundary terms at the level of first-class constraints. By considering boundary variations of the relevant functionals in the Poisson brackets, the surface integral in the very definition of a transgression action can be translated into boundary contributions in the generators of gauge transformations and diffeomorphisms. This prescription systematically leads to the corresponding surface charges of the theory, reducing to the general expression for conserved charges in (higher-dimensional) Chern-Simons theories when one of the gauge connections in the transgression form is set to zero.

  • Název v anglickém jazyce

    A note on the Hamiltonian structure of transgression forms

  • Popis výsledku anglicky

    By incorporating two gauge connections, transgression forms provide a generalization of Chern-Simons actions that are genuinely gauge-invariant on bounded manifolds. In this work, we show that, when defined on a manifold with a boundary, the Hamiltonian formulation of a transgression field theory can be consistently carried out without the need to implement regularizing boundary terms at the level of first-class constraints. By considering boundary variations of the relevant functionals in the Poisson brackets, the surface integral in the very definition of a transgression action can be translated into boundary contributions in the generators of gauge transformations and diffeomorphisms. This prescription systematically leads to the corresponding surface charges of the theory, reducing to the general expression for conserved charges in (higher-dimensional) Chern-Simons theories when one of the gauge connections in the transgression form is set to zero.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of High Energy Physics

  • ISSN

    1029-8479

  • e-ISSN

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    25

  • Strana od-do

    190

  • Kód UT WoS článku

    001137761300002

  • EID výsledku v databázi Scopus

    2-s2.0-85181189876