Controlling Automatic Experiment-Driven Systems Using Statistics and Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475283" target="_blank" >RIV/00216208:11320/23:10475283 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-36889-9_9" target="_blank" >https://doi.org/10.1007/978-3-031-36889-9_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-36889-9_9" target="_blank" >10.1007/978-3-031-36889-9_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Controlling Automatic Experiment-Driven Systems Using Statistics and Machine Learning
Popis výsledku v původním jazyce
Experiments are used in many modern systems to optimize their operation. Such experiment-driven systems are used in various fields, such as web-based systems, smart-* systems, and various self-adaptive systems. There is a class of these systems that derive their data from running simulations or another type of computation, such as in digital twins, online planning using probabilistic model-checking, or performance benchmarking. To obtain statistically significant results, these systems must repeat the experiments multiple times. As a result, they consume extensive computation resources. The GraalVM benchmarking project detects performance changes in the GraalVM compiler. However, the benchmarking project has an extensive usage of computational resources and time. The doctoral research project proposed in this paper focuses on controlling the experiments with the goal of reducing computation costs. The plan is to use statistical and machine learning approaches to predict the outcomes of experiments and select the experiments yielding more useful information. As an evaluation, we are applying these methods to the GraalVM benchmarking project; the initial results confirm that these methods have the potential to significantly reduce computation costs.
Název v anglickém jazyce
Controlling Automatic Experiment-Driven Systems Using Statistics and Machine Learning
Popis výsledku anglicky
Experiments are used in many modern systems to optimize their operation. Such experiment-driven systems are used in various fields, such as web-based systems, smart-* systems, and various self-adaptive systems. There is a class of these systems that derive their data from running simulations or another type of computation, such as in digital twins, online planning using probabilistic model-checking, or performance benchmarking. To obtain statistically significant results, these systems must repeat the experiments multiple times. As a result, they consume extensive computation resources. The GraalVM benchmarking project detects performance changes in the GraalVM compiler. However, the benchmarking project has an extensive usage of computational resources and time. The doctoral research project proposed in this paper focuses on controlling the experiments with the goal of reducing computation costs. The plan is to use statistical and machine learning approaches to predict the outcomes of experiments and select the experiments yielding more useful information. As an evaluation, we are applying these methods to the GraalVM benchmarking project; the initial results confirm that these methods have the potential to significantly reduce computation costs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Software Architecture. ECSA 2022 Tracks and Workshops
ISBN
978-3-031-36889-9
ISSN
—
e-ISSN
—
Počet stran výsledku
15
Strana od-do
105-119
Název nakladatele
Springer
Místo vydání
Switzerland
Místo konání akce
Prague, CZ
Datum konání akce
19. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001310761900009