Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Collisional Evolution of the Primordial Kuiper Belt, Its Destabilized Population, and the Trojan Asteroids

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475288" target="_blank" >RIV/00216208:11320/23:10475288 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xoJIMZCmVf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xoJIMZCmVf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/PSJ/ace7cd" target="_blank" >10.3847/PSJ/ace7cd</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Collisional Evolution of the Primordial Kuiper Belt, Its Destabilized Population, and the Trojan Asteroids

  • Popis výsledku v původním jazyce

    The tumultuous early era of outer solar system evolution culminated when Neptune migrated across the primordial Kuiper Belt (PKB) and triggered a dynamical instability among the giant planets. This event led to the ejection of similar to 99.9% of the PKB (here called the destabilized population), heavy bombardment of the giant planet satellites, and the capture of Jupiter&apos;s Trojans. While this scenario has been widely tested using dynamical models, there have been fewer investigations into how the PKB, its destabilized population, and the Trojans experienced collisional evolution. Here we examined this issue for all three populations with the code Boulder. Our constraints included the size-frequency distributions (SFDs) of the Trojan asteroids and craters on the giant planet satellites. Using this combination, we solved for the unknown disruption law affecting bodies in these populations. The weakest ones, from an impact energy per mass perspective, were diameter D similar to 20 m. Overall, collisional evolution produces a power-law-like shape for multikilometer Trojans and a wavy-shaped SFD in the PKB and destabilized populations. The latter can explain (i) the shapes of the ancient and younger crater SFDs observed on the giant planet satellites, (ii) the shapes of the Jupiter family and long-period comet SFDs, which experienced different degrees of collision evolution, and ( iii) the present-day impact frequency of superbolides on Jupiter and smaller projectiles on Saturn&apos;s rings. Our model results also indicate that many observed comets, the majority which are D &lt; 10 km, are likely to be gravitational aggregates formed by large-scale collision events.

  • Název v anglickém jazyce

    The Collisional Evolution of the Primordial Kuiper Belt, Its Destabilized Population, and the Trojan Asteroids

  • Popis výsledku anglicky

    The tumultuous early era of outer solar system evolution culminated when Neptune migrated across the primordial Kuiper Belt (PKB) and triggered a dynamical instability among the giant planets. This event led to the ejection of similar to 99.9% of the PKB (here called the destabilized population), heavy bombardment of the giant planet satellites, and the capture of Jupiter&apos;s Trojans. While this scenario has been widely tested using dynamical models, there have been fewer investigations into how the PKB, its destabilized population, and the Trojans experienced collisional evolution. Here we examined this issue for all three populations with the code Boulder. Our constraints included the size-frequency distributions (SFDs) of the Trojan asteroids and craters on the giant planet satellites. Using this combination, we solved for the unknown disruption law affecting bodies in these populations. The weakest ones, from an impact energy per mass perspective, were diameter D similar to 20 m. Overall, collisional evolution produces a power-law-like shape for multikilometer Trojans and a wavy-shaped SFD in the PKB and destabilized populations. The latter can explain (i) the shapes of the ancient and younger crater SFDs observed on the giant planet satellites, (ii) the shapes of the Jupiter family and long-period comet SFDs, which experienced different degrees of collision evolution, and ( iii) the present-day impact frequency of superbolides on Jupiter and smaller projectiles on Saturn&apos;s rings. Our model results also indicate that many observed comets, the majority which are D &lt; 10 km, are likely to be gravitational aggregates formed by large-scale collision events.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-11058S" target="_blank" >GA21-11058S: Raný orbitální a chemický vývoj planetárních soustav</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    The Planetary Science Journal

  • ISSN

    2632-3338

  • e-ISSN

    2632-3338

  • Svazek periodika

    4

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    42

  • Strana od-do

    168

  • Kód UT WoS článku

    001069086500001

  • EID výsledku v databázi Scopus

    2-s2.0-85174898607