Mapping AMR to UMR: Resources for Adapting Existing Corpora for Cross-Lingual Compatibility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475692" target="_blank" >RIV/00216208:11320/23:10475692 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.tlt-1.8" target="_blank" >https://aclanthology.org/2023.tlt-1.8</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mapping AMR to UMR: Resources for Adapting Existing Corpora for Cross-Lingual Compatibility
Popis výsledku v původním jazyce
This paper presents detailed mappings between the structures used in Abstract Meaning Representation (AMR) and those used in Uniform Meaning Representation (UMR). These structures include general semantic roles, rolesets, and concepts that are largely shared between AMR and UMR, but with crucial differences. While UMR annotation of new low-resource languages is ongoing, AMR-annotated corpora already exist for many languages, and these AMR corpora are ripe for conversion to UMR format. Rather than focusing on semantic coverage that is new to UMR (which will likely need to be dealt with manually), this paper serves as a resource (with illustrated mappings) for users looking to understand the fine-grained adjustments that have been made to the representation techniques for semantic categories present in both AMR and UMR.
Název v anglickém jazyce
Mapping AMR to UMR: Resources for Adapting Existing Corpora for Cross-Lingual Compatibility
Popis výsledku anglicky
This paper presents detailed mappings between the structures used in Abstract Meaning Representation (AMR) and those used in Uniform Meaning Representation (UMR). These structures include general semantic roles, rolesets, and concepts that are largely shared between AMR and UMR, but with crucial differences. While UMR annotation of new low-resource languages is ongoing, AMR-annotated corpora already exist for many languages, and these AMR corpora are ripe for conversion to UMR format. Rather than focusing on semantic coverage that is new to UMR (which will likely need to be dealt with manually), this paper serves as a resource (with illustrated mappings) for users looking to understand the fine-grained adjustments that have been made to the representation techniques for semantic categories present in both AMR and UMR.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
TLT 2023 - 21st International Workshop on Treebanks and Linguistic Theories (TLT, GURT/SyntaxFest 2023), Proceedings of the Conference
ISBN
978-1-959429-33-3
ISSN
—
e-ISSN
—
Počet stran výsledku
22
Strana od-do
74-95
Název nakladatele
Association for Computational Linguistics
Místo vydání
Washington, D.C., USA
Místo konání akce
Washington, D.C., USA
Datum konání akce
9. 3. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—