Is a Prestigious Job the same as a Prestigious Country? A Case Study on Multilingual Sentence Embeddings and European Countries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475750" target="_blank" >RIV/00216208:11320/23:10475750 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.findings-emnlp.71.pdf" target="_blank" >https://aclanthology.org/2023.findings-emnlp.71.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Is a Prestigious Job the same as a Prestigious Country? A Case Study on Multilingual Sentence Embeddings and European Countries
Popis výsledku v původním jazyce
We study how multilingual sentence representations capture European countries and occupations and how this differs across European languages. We prompt the models with templated sentences that we machine-translate into 12 European languages and analyze the most prominent dimensions in the embeddings. Our analysis reveals that the most prominent feature in the embedding is the geopolitical distinction between Eastern and Western Europe and the country's economic strength in terms of GDP. When prompted specifically for job prestige, the embedding space clearly distinguishes high and low-prestige jobs. The occupational dimension is uncorrelated with the most dominant country dimensions in three out of four studied models. The exception is a small distilled model that exhibits a connection between occupational prestige and country of origin, which is a potential source of nationality-based discrimination. Our findings are consistent across languages.
Název v anglickém jazyce
Is a Prestigious Job the same as a Prestigious Country? A Case Study on Multilingual Sentence Embeddings and European Countries
Popis výsledku anglicky
We study how multilingual sentence representations capture European countries and occupations and how this differs across European languages. We prompt the models with templated sentences that we machine-translate into 12 European languages and analyze the most prominent dimensions in the embeddings. Our analysis reveals that the most prominent feature in the embedding is the geopolitical distinction between Eastern and Western Europe and the country's economic strength in terms of GDP. When prompted specifically for job prestige, the embedding space clearly distinguishes high and low-prestige jobs. The occupational dimension is uncorrelated with the most dominant country dimensions in three out of four studied models. The exception is a small distilled model that exhibits a connection between occupational prestige and country of origin, which is a potential source of nationality-based discrimination. Our findings are consistent across languages.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Findings of the Association for Computational Linguistics: EMNLP 2023
ISBN
978-1-955917-71-1
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
1000-1010
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg, PA, USA
Místo konání akce
Singapore, Singapore
Datum konání akce
6. 12. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—