Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475807" target="_blank" >RIV/00216208:11320/23:10475807 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c6We655Yb5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=c6We655Yb5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d3ta01390a" target="_blank" >10.1039/d3ta01390a</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors

  • Popis výsledku v původním jazyce

    In this work, we demonstrate that solution-processed In2Se3 nanosheets exhibit exceptional selectivity and sensitivity to NO2 gas, making them a promising candidate for gas detection systems. Theoretical simulations and surface-science experiments reveal the unique surface properties of In2Se3 nanosheets, which prevent physisorption of oxygen, carbon monoxide, and carbon dioxide, making them remarkably stable towards oxidation and CO-poisoning. Moreover, we show that NO2 molecules adsorb stably on In2Se3 nanosheets, particularly on Se vacancies, even at high temperatures. The coadsorption of water further enhances NO2 sticking on the In2Se3 surface, making it an ideal material for gas sensing applications in humid and harsh environments. The fabricated In2Se3 gas sensors exhibit excellent and reversible sensing response to NO2 gas, with a limit of detection of 5 ppb at 300 degrees C, and a highly selective response to NO2 compared to other gases and volatile organic compounds. Our sensors outperform other two-dimensional (2D) semiconductors, metal oxides, and their heterostructures, thanks to the unique surface properties of In2Se3 nanosheets. Importantly, the number of layers and termination of the surface almost have no impact on the sensing performance of In2Se3, which is advantageous for practical applications. The high sensitivity, selectivity, and stability of In2Se3 nanosheets make them an exciting platform for the fabrication of high-performance gas sensors, particularly in harsh environments, such as industrial settings or outdoor monitoring. Moreover, our solution processing approach enables scalable production of the sensors. Additionally, their unique surface properties make them an attractive candidate for developing complex composite nanostructures with tailored gas sensing characteristics for various applications.

  • Název v anglickém jazyce

    Solution-processed In2Se3 nanosheets for ultrasensitive and highly selective NO2 gas sensors

  • Popis výsledku anglicky

    In this work, we demonstrate that solution-processed In2Se3 nanosheets exhibit exceptional selectivity and sensitivity to NO2 gas, making them a promising candidate for gas detection systems. Theoretical simulations and surface-science experiments reveal the unique surface properties of In2Se3 nanosheets, which prevent physisorption of oxygen, carbon monoxide, and carbon dioxide, making them remarkably stable towards oxidation and CO-poisoning. Moreover, we show that NO2 molecules adsorb stably on In2Se3 nanosheets, particularly on Se vacancies, even at high temperatures. The coadsorption of water further enhances NO2 sticking on the In2Se3 surface, making it an ideal material for gas sensing applications in humid and harsh environments. The fabricated In2Se3 gas sensors exhibit excellent and reversible sensing response to NO2 gas, with a limit of detection of 5 ppb at 300 degrees C, and a highly selective response to NO2 compared to other gases and volatile organic compounds. Our sensors outperform other two-dimensional (2D) semiconductors, metal oxides, and their heterostructures, thanks to the unique surface properties of In2Se3 nanosheets. Importantly, the number of layers and termination of the surface almost have no impact on the sensing performance of In2Se3, which is advantageous for practical applications. The high sensitivity, selectivity, and stability of In2Se3 nanosheets make them an exciting platform for the fabrication of high-performance gas sensors, particularly in harsh environments, such as industrial settings or outdoor monitoring. Moreover, our solution processing approach enables scalable production of the sensors. Additionally, their unique surface properties make them an attractive candidate for developing complex composite nanostructures with tailored gas sensing characteristics for various applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2023072" target="_blank" >LM2023072: Laboratoř fyziky povrchů – Vodíkové technologické centrum</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Materials Chemistry A

  • ISSN

    2050-7488

  • e-ISSN

    2050-7496

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    12315-12327

  • Kód UT WoS článku

    000998965500001

  • EID výsledku v databázi Scopus

    2-s2.0-85164188589