Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recognizing H-Graphs - Beyond Circular-Arc Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475887" target="_blank" >RIV/00216208:11320/23:10475887 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14330/23:00131122

  • Výsledek na webu

    <a href="https://doi.org/10.4230/LIPICS.MFCS.2023.8" target="_blank" >https://doi.org/10.4230/LIPICS.MFCS.2023.8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPICS.MFCS.2023.8" target="_blank" >10.4230/LIPICS.MFCS.2023.8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recognizing H-Graphs - Beyond Circular-Arc Graphs

  • Popis výsledku v původním jazyce

    In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K1-graphs coincide with interval graphs, K3-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K3-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and ???? cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

  • Název v anglickém jazyce

    Recognizing H-Graphs - Beyond Circular-Arc Graphs

  • Popis výsledku anglicky

    In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K1-graphs coincide with interval graphs, K3-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K3-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and ???? cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Jérôme Leroux, Sylvain Lombardy, David Peleg: 48th International Symposium on Mathematical Foundations of Computer Science, MFCS 2023, August 28 to September 1, 2023, Bordeaux, France

  • ISBN

    978-3-95977-292-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    14

  • Strana od-do

    1-14

  • Název nakladatele

    Schloss Dagstuhl - Leibniz-Zentrum für Informatik

  • Místo vydání

    Neuveden

  • Místo konání akce

    Bordeaux, France

  • Datum konání akce

    28. 8. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku