Mind the Labels: Describing Relations in Knowledge Graphs With Pretrained Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475957" target="_blank" >RIV/00216208:11320/23:10475957 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.eacl-main.176/" target="_blank" >https://aclanthology.org/2023.eacl-main.176/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2023.eacl-main.176" target="_blank" >10.18653/v1/2023.eacl-main.176</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mind the Labels: Describing Relations in Knowledge Graphs With Pretrained Models
Popis výsledku v původním jazyce
Pretrained language models (PLMs) for data-to-text (D2T) generation can use human-readable data labels such as column headings, keys, or relation names to generalize to out-of-domain examples. However, the models are well-known in producing semantically inaccurate outputs if these labels are ambiguous or incomplete, which is often the case in D2T datasets. In this paper, we expose this issue on the task of descibing a relation between two entities. For our experiments, we collect a novel dataset for verbalizing a diverse set of 1,522 unique relations from three large-scale knowledge graphs (Wikidata, DBPedia, YAGO). We find that although PLMs for D2T generation expectedly fail on unclear cases, models trained with a large variety of relation labels are surprisingly robust in verbalizing novel, unseen relations. We argue that using data with a diverse set of clear and meaningful labels is key to training D2T generation systems capable of generalizing to novel domains.
Název v anglickém jazyce
Mind the Labels: Describing Relations in Knowledge Graphs With Pretrained Models
Popis výsledku anglicky
Pretrained language models (PLMs) for data-to-text (D2T) generation can use human-readable data labels such as column headings, keys, or relation names to generalize to out-of-domain examples. However, the models are well-known in producing semantically inaccurate outputs if these labels are ambiguous or incomplete, which is often the case in D2T datasets. In this paper, we expose this issue on the task of descibing a relation between two entities. For our experiments, we collect a novel dataset for verbalizing a diverse set of 1,522 unique relations from three large-scale knowledge graphs (Wikidata, DBPedia, YAGO). We find that although PLMs for D2T generation expectedly fail on unclear cases, models trained with a large variety of relation labels are surprisingly robust in verbalizing novel, unseen relations. We argue that using data with a diverse set of clear and meaningful labels is key to training D2T generation systems capable of generalizing to novel domains.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
ISBN
978-1-959429-44-9
ISSN
—
e-ISSN
—
Počet stran výsledku
18
Strana od-do
2398-2415
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg, PA, USA
Místo konání akce
Dubrovnik, Croatia
Datum konání akce
2. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—