Separating single- from multi-particle dynamics in nonlinear spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476119" target="_blank" >RIV/00216208:11320/23:10476119 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gyBy98zTGG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gyBy98zTGG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-023-05846-7" target="_blank" >10.1038/s41586-023-05846-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Separating single- from multi-particle dynamics in nonlinear spectroscopy
Popis výsledku v původním jazyce
Quantum states depend on the coordinates of all their constituent particles, with essential multi-particle correlations. Time-resolved laser spectroscopy(1) is widely used to probe the energies and dynamics of excited particles and quasiparticles such as electrons and holes(2,3), excitons(4-6), plasmons(7), polaritons(8) or phonons(9). However, nonlinear signals from single- and multiple-particle excitations are all present simultaneously and cannot be disentangled without a priori knowledge of the system(4,10). Here, we show that transient absorption-the most commonly used nonlinear spectroscopy-with N prescribed excitation intensities allows separation of the dynamics into N increasingly nonlinear contributions; in systems well-described by discrete excitations, these N contributions systematically report on zero to N excitations. We obtain clean single-particle dynamics even at high excitation intensities and can systematically increase the number of interacting particles, infer their interaction energies and reconstruct their dynamics, which are not measurable via conventional means. We extract single- and multiple-exciton dynamics in squaraine polymers(11,12) and, contrary to common assumption(6,13), we find that the excitons, on average, meet several times before annihilating. This surprising ability of excitons to survive encounters is important for efficient organic photovoltaics(14,15). As we demonstrate on five diverse systems, our procedure is general, independent of the measured system or type of observed (quasi)particle and straightforward to implement. We envision future applicability in the probing of (quasi)particle interactions in such diverse areas as plasmonics(7), Auger recombination(2) and exciton correlations in quantum dots(5,16,17), singlet fission(18), exciton interactions in two-dimensional materials(19) and in molecules(20,21), carrier multiplication(22), multiphonon scattering(9) or polariton-polariton interaction(8).
Název v anglickém jazyce
Separating single- from multi-particle dynamics in nonlinear spectroscopy
Popis výsledku anglicky
Quantum states depend on the coordinates of all their constituent particles, with essential multi-particle correlations. Time-resolved laser spectroscopy(1) is widely used to probe the energies and dynamics of excited particles and quasiparticles such as electrons and holes(2,3), excitons(4-6), plasmons(7), polaritons(8) or phonons(9). However, nonlinear signals from single- and multiple-particle excitations are all present simultaneously and cannot be disentangled without a priori knowledge of the system(4,10). Here, we show that transient absorption-the most commonly used nonlinear spectroscopy-with N prescribed excitation intensities allows separation of the dynamics into N increasingly nonlinear contributions; in systems well-described by discrete excitations, these N contributions systematically report on zero to N excitations. We obtain clean single-particle dynamics even at high excitation intensities and can systematically increase the number of interacting particles, infer their interaction energies and reconstruct their dynamics, which are not measurable via conventional means. We extract single- and multiple-exciton dynamics in squaraine polymers(11,12) and, contrary to common assumption(6,13), we find that the excitons, on average, meet several times before annihilating. This surprising ability of excitons to survive encounters is important for efficient organic photovoltaics(14,15). As we demonstrate on five diverse systems, our procedure is general, independent of the measured system or type of observed (quasi)particle and straightforward to implement. We envision future applicability in the probing of (quasi)particle interactions in such diverse areas as plasmonics(7), Auger recombination(2) and exciton correlations in quantum dots(5,16,17), singlet fission(18), exciton interactions in two-dimensional materials(19) and in molecules(20,21), carrier multiplication(22), multiphonon scattering(9) or polariton-polariton interaction(8).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature
ISSN
0028-0836
e-ISSN
1476-4687
Svazek periodika
616
Číslo periodika v rámci svazku
7956
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
280-292
Kód UT WoS článku
000960436400001
EID výsledku v databázi Scopus
2-s2.0-85150909628