The Problem of Coherence in Natural Language Explanations of Recommendations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476181" target="_blank" >RIV/00216208:11320/23:10476181 - isvavai.cz</a>
Výsledek na webu
<a href="https://ebooks.iospress.nl/volumearticle/64414" target="_blank" >https://ebooks.iospress.nl/volumearticle/64414</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA230482" target="_blank" >10.3233/FAIA230482</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Problem of Coherence in Natural Language Explanations of Recommendations
Popis výsledku v původním jazyce
Providing natural language explanations for recommendations is particularly useful from the perspective of a non-expert user. Although several methods for providing such explanations have recently been proposed, we argue that an important aspect of explanation quality has been overlooked in their experimental evaluation. Specifically, the coherence between generated text and predicted rating, which is a necessary condition for an explanation to be useful, is not properly captured by currently used evaluation measures. In this paper, we highlight the issue of explanation and prediction coherence by 1) presenting results from a manual verification of explanations generated by one of the state-of-the-art approaches 2) proposing a method of automatic coherence evaluation 3) introducing a new transformer-based method that aims to produce more coherent explanations than the state-of-the-art approaches 4) performing an experimental evaluation which demonstrates that this method significantly improves the explanation coherence without affecting the other aspects of recommendation performance.
Název v anglickém jazyce
The Problem of Coherence in Natural Language Explanations of Recommendations
Popis výsledku anglicky
Providing natural language explanations for recommendations is particularly useful from the perspective of a non-expert user. Although several methods for providing such explanations have recently been proposed, we argue that an important aspect of explanation quality has been overlooked in their experimental evaluation. Specifically, the coherence between generated text and predicted rating, which is a necessary condition for an explanation to be useful, is not properly captured by currently used evaluation measures. In this paper, we highlight the issue of explanation and prediction coherence by 1) presenting results from a manual verification of explanations generated by one of the state-of-the-art approaches 2) proposing a method of automatic coherence evaluation 3) introducing a new transformer-based method that aims to produce more coherent explanations than the state-of-the-art approaches 4) performing an experimental evaluation which demonstrates that this method significantly improves the explanation coherence without affecting the other aspects of recommendation performance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
26th European Conference on Artificial Intelligence ECAI 2023
ISBN
978-1-64368-436-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1922-1929
Název nakladatele
IOS Press BV
Místo vydání
Amsterdam, Netherlands
Místo konání akce
Kraków, Poland
Datum konání akce
30. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—