Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Well-posed nonvacuum solutions in Robinson-Trautman geometry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476625" target="_blank" >RIV/00216208:11320/23:10476625 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zgVRTbWfv6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zgVRTbWfv6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.108.124076" target="_blank" >10.1103/PhysRevD.108.124076</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Well-posed nonvacuum solutions in Robinson-Trautman geometry

  • Popis výsledku v původním jazyce

    We study nonlinear matter models compatible with radiative Robinson-Trautman spacetimes and analyze their stability and well-posedness. The results lead us to formulate a conjecture relating the (in)stability and well/ill-posedness to the character of singularity appearing in the solutions. We consider two types of nonlinear electrodynamics models, namely we provide a radiative ModMax solution and extend recent results for the RegMax model by considering the magnetically charged case. In both cases, we investigate linear perturbations around stationary spherically symmetric solutions to determine the stability and principal symbol of the system to argue about well-posedness of these geometries. Additionally, we consider a nonlinear sigma model as a source for Robinson-Trautman geometry. This leads to stationary solutions with toroidal (as opposed to spherical) topology thus demanding modification of the analysis.

  • Název v anglickém jazyce

    Well-posed nonvacuum solutions in Robinson-Trautman geometry

  • Popis výsledku anglicky

    We study nonlinear matter models compatible with radiative Robinson-Trautman spacetimes and analyze their stability and well-posedness. The results lead us to formulate a conjecture relating the (in)stability and well/ill-posedness to the character of singularity appearing in the solutions. We consider two types of nonlinear electrodynamics models, namely we provide a radiative ModMax solution and extend recent results for the RegMax model by considering the magnetically charged case. In both cases, we investigate linear perturbations around stationary spherically symmetric solutions to determine the stability and principal symbol of the system to argue about well-posedness of these geometries. Additionally, we consider a nonlinear sigma model as a source for Robinson-Trautman geometry. This leads to stationary solutions with toroidal (as opposed to spherical) topology thus demanding modification of the analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

    2470-0029

  • Svazek periodika

    108

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    124076

  • Kód UT WoS článku

    001145867000013

  • EID výsledku v databázi Scopus

    2-s2.0-85180961733