Can Bekenstein's area law prevail in modified theories of gravity?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476627" target="_blank" >RIV/00216208:11320/23:10476627 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vaCDyxK7PE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vaCDyxK7PE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.108.L121501" target="_blank" >10.1103/PhysRevD.108.L121501</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Can Bekenstein's area law prevail in modified theories of gravity?
Popis výsledku v původním jazyce
According to Bekenstein's area law, the black hole entropy is identified holographically with one quarter of the horizon area. However, it is commonly believed that such a law is only valid in Einstein's theory and that higher curvature corrections generically give rise to its modifications. This is, for example, the case of black holes in Lovelock gravities, or their four-dimensional cousins in the recently discovered 4D scalartensor Gauss-Bonnet gravity where one naively "finds" (classical) logarithmic corrections to the Bekenstein's law. In this paper we argue that such logarithmic corrections originate from ignoring the shift symmetry of the 4D Gauss-Bonnet gravity. When this symmetry is properly taken into account, there is no longer any departure from the area law in this theory. Moreover, the first law remains valid upon modifying the black hole temperature, which can be derived via the Euclidean grand canonical ensemble (Brown-York) procedure, but is no longer given by the surface gravity. Interestingly, we show that upon similar modification of the black hole temperature the area law can also prevail for black holes in higherdimensional Lovelock gravities.
Název v anglickém jazyce
Can Bekenstein's area law prevail in modified theories of gravity?
Popis výsledku anglicky
According to Bekenstein's area law, the black hole entropy is identified holographically with one quarter of the horizon area. However, it is commonly believed that such a law is only valid in Einstein's theory and that higher curvature corrections generically give rise to its modifications. This is, for example, the case of black holes in Lovelock gravities, or their four-dimensional cousins in the recently discovered 4D scalartensor Gauss-Bonnet gravity where one naively "finds" (classical) logarithmic corrections to the Bekenstein's law. In this paper we argue that such logarithmic corrections originate from ignoring the shift symmetry of the 4D Gauss-Bonnet gravity. When this symmetry is properly taken into account, there is no longer any departure from the area law in this theory. Moreover, the first law remains valid upon modifying the black hole temperature, which can be derived via the Euclidean grand canonical ensemble (Brown-York) procedure, but is no longer given by the surface gravity. Interestingly, we show that upon similar modification of the black hole temperature the area law can also prevail for black holes in higherdimensional Lovelock gravities.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07457S" target="_blank" >GA23-07457S: Skryté symetrie a chemie černých děr</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
108
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
L121501
Kód UT WoS článku
001145860500009
EID výsledku v databázi Scopus
2-s2.0-85180307847