Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Banados-Silk-West effect with finite forces near different types of horizons: General classification of scenarios

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10495266" target="_blank" >RIV/00216208:11320/23:10495266 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JD6dCRKV6P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JD6dCRKV6P</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.108.064029" target="_blank" >10.1103/PhysRevD.108.064029</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Banados-Silk-West effect with finite forces near different types of horizons: General classification of scenarios

  • Popis výsledku v původním jazyce

    If two particles move toward a black hole and collide in the vicinity of the horizon, under certain conditions, their energy Ec.m. in the center of mass frame can grow unbounded. This is the Banados-Silk-West (BSW) effect. Usually, this effect is considered for extremal horizons and geodesic (or electrogedesic) trajectories. We study this effect in a more general context, when both geometric and dynamic factors are taken into account. We consider generic axially symmetric rotating black holes. The near-horizon behavior of metric coefficients is determined by three numbers p, q, k that appear in the Taylor expansions for different types of a horizon. This includes nonextremal, extremal, and ultraextremal horizons. We also give general classification of possible trajectories that include so-called usual, subcritical, critical, and ultracritical ones depending on the near-horizon behavior of the radial component of the four-velocity. We assume that particles move not freely but under the action of some unspecified force. We find when the finiteness of a force and the BSW effect are compatible with each other. The BSW effect implies that one of two particles has fine-tuned parameters. We show that such a particle always requires an infinite proper time for reaching the horizon. Otherwise, either a force becomes infinite, or a horizon fails to be regular. This realizes the so-called principle of kinematic censorship that forbids literally infinite Ec.m. in any act of collision. The obtained general results are illustrated for the Kerr-Newman-(anti-)de Sitter metric used as an example. The description of diversity of trajectories suggested in our work can be of use also in other contexts, beyond the BSW effect. In particular, we find the relation between a force and the type of a trajectory.

  • Název v anglickém jazyce

    Banados-Silk-West effect with finite forces near different types of horizons: General classification of scenarios

  • Popis výsledku anglicky

    If two particles move toward a black hole and collide in the vicinity of the horizon, under certain conditions, their energy Ec.m. in the center of mass frame can grow unbounded. This is the Banados-Silk-West (BSW) effect. Usually, this effect is considered for extremal horizons and geodesic (or electrogedesic) trajectories. We study this effect in a more general context, when both geometric and dynamic factors are taken into account. We consider generic axially symmetric rotating black holes. The near-horizon behavior of metric coefficients is determined by three numbers p, q, k that appear in the Taylor expansions for different types of a horizon. This includes nonextremal, extremal, and ultraextremal horizons. We also give general classification of possible trajectories that include so-called usual, subcritical, critical, and ultracritical ones depending on the near-horizon behavior of the radial component of the four-velocity. We assume that particles move not freely but under the action of some unspecified force. We find when the finiteness of a force and the BSW effect are compatible with each other. The BSW effect implies that one of two particles has fine-tuned parameters. We show that such a particle always requires an infinite proper time for reaching the horizon. Otherwise, either a force becomes infinite, or a horizon fails to be regular. This realizes the so-called principle of kinematic censorship that forbids literally infinite Ec.m. in any act of collision. The obtained general results are illustrated for the Kerr-Newman-(anti-)de Sitter metric used as an example. The description of diversity of trajectories suggested in our work can be of use also in other contexts, beyond the BSW effect. In particular, we find the relation between a force and the type of a trajectory.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

    2470-0029

  • Svazek periodika

    108

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    064029

  • Kód UT WoS článku

    001073319600006

  • EID výsledku v databázi Scopus

    2-s2.0-85172773609