Banados-Silk-West effect with finite forces near different types of horizons: General classification of scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10495266" target="_blank" >RIV/00216208:11320/23:10495266 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JD6dCRKV6P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JD6dCRKV6P</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.108.064029" target="_blank" >10.1103/PhysRevD.108.064029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Banados-Silk-West effect with finite forces near different types of horizons: General classification of scenarios
Popis výsledku v původním jazyce
If two particles move toward a black hole and collide in the vicinity of the horizon, under certain conditions, their energy Ec.m. in the center of mass frame can grow unbounded. This is the Banados-Silk-West (BSW) effect. Usually, this effect is considered for extremal horizons and geodesic (or electrogedesic) trajectories. We study this effect in a more general context, when both geometric and dynamic factors are taken into account. We consider generic axially symmetric rotating black holes. The near-horizon behavior of metric coefficients is determined by three numbers p, q, k that appear in the Taylor expansions for different types of a horizon. This includes nonextremal, extremal, and ultraextremal horizons. We also give general classification of possible trajectories that include so-called usual, subcritical, critical, and ultracritical ones depending on the near-horizon behavior of the radial component of the four-velocity. We assume that particles move not freely but under the action of some unspecified force. We find when the finiteness of a force and the BSW effect are compatible with each other. The BSW effect implies that one of two particles has fine-tuned parameters. We show that such a particle always requires an infinite proper time for reaching the horizon. Otherwise, either a force becomes infinite, or a horizon fails to be regular. This realizes the so-called principle of kinematic censorship that forbids literally infinite Ec.m. in any act of collision. The obtained general results are illustrated for the Kerr-Newman-(anti-)de Sitter metric used as an example. The description of diversity of trajectories suggested in our work can be of use also in other contexts, beyond the BSW effect. In particular, we find the relation between a force and the type of a trajectory.
Název v anglickém jazyce
Banados-Silk-West effect with finite forces near different types of horizons: General classification of scenarios
Popis výsledku anglicky
If two particles move toward a black hole and collide in the vicinity of the horizon, under certain conditions, their energy Ec.m. in the center of mass frame can grow unbounded. This is the Banados-Silk-West (BSW) effect. Usually, this effect is considered for extremal horizons and geodesic (or electrogedesic) trajectories. We study this effect in a more general context, when both geometric and dynamic factors are taken into account. We consider generic axially symmetric rotating black holes. The near-horizon behavior of metric coefficients is determined by three numbers p, q, k that appear in the Taylor expansions for different types of a horizon. This includes nonextremal, extremal, and ultraextremal horizons. We also give general classification of possible trajectories that include so-called usual, subcritical, critical, and ultracritical ones depending on the near-horizon behavior of the radial component of the four-velocity. We assume that particles move not freely but under the action of some unspecified force. We find when the finiteness of a force and the BSW effect are compatible with each other. The BSW effect implies that one of two particles has fine-tuned parameters. We show that such a particle always requires an infinite proper time for reaching the horizon. Otherwise, either a force becomes infinite, or a horizon fails to be regular. This realizes the so-called principle of kinematic censorship that forbids literally infinite Ec.m. in any act of collision. The obtained general results are illustrated for the Kerr-Newman-(anti-)de Sitter metric used as an example. The description of diversity of trajectories suggested in our work can be of use also in other contexts, beyond the BSW effect. In particular, we find the relation between a force and the type of a trajectory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
108
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
064029
Kód UT WoS článku
001073319600006
EID výsledku v databázi Scopus
2-s2.0-85172773609