Zero-shot Transfer of Article-aware Legal Outcome Classification for European Court of Human Rights Cases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A4B2M8CT5" target="_blank" >RIV/00216208:11320/23:4B2M8CT5 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.findings-eacl.44/" target="_blank" >https://aclanthology.org/2023.findings-eacl.44/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2023.findings-eacl.44" target="_blank" >10.18653/v1/2023.findings-eacl.44</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Zero-shot Transfer of Article-aware Legal Outcome Classification for European Court of Human Rights Cases
Popis výsledku v původním jazyce
"In this paper, we cast Legal Judgment Prediction on European Court of Human Rights cases into an article-aware classification task, where the case outcome is classified from a combined input of case facts and convention articles. This configuration facilitates the model learning some legal reasoning ability in mapping article text to specific case fact text. It also provides an opportunity to evaluate the model’s ability to generalize to zero-shot settings when asked to classify the case outcome with respect to articles not seen during training. We devise zero-shot experiments and apply domain adaptation methods based on domain discrimination and Wasserstein distance. Our results demonstrate that the article-aware architecture outperforms straightforward fact classification. We also find that domain adaptation methods improve zero-shot transfer performance, with article relatedness and encoder pre-training influencing the effect."
Název v anglickém jazyce
Zero-shot Transfer of Article-aware Legal Outcome Classification for European Court of Human Rights Cases
Popis výsledku anglicky
"In this paper, we cast Legal Judgment Prediction on European Court of Human Rights cases into an article-aware classification task, where the case outcome is classified from a combined input of case facts and convention articles. This configuration facilitates the model learning some legal reasoning ability in mapping article text to specific case fact text. It also provides an opportunity to evaluate the model’s ability to generalize to zero-shot settings when asked to classify the case outcome with respect to articles not seen during training. We devise zero-shot experiments and apply domain adaptation methods based on domain discrimination and Wasserstein distance. Our results demonstrate that the article-aware architecture outperforms straightforward fact classification. We also find that domain adaptation methods improve zero-shot transfer performance, with article relatedness and encoder pre-training influencing the effect."
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
"Findings of the Association for Computational Linguistics: EACL 2023"
ISBN
978-1-959429-47-0
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
605-617
Název nakladatele
ACL
Místo vydání
Dubrovnik, Croatia
Místo konání akce
Dubrovnik, Croatia
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—