Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Joint Learning Model for Low-Resource Agglutinative Language Morphological Tagging

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A6I463P5K" target="_blank" >RIV/00216208:11320/23:6I463P5K - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175400093&partnerID=40&md5=ef3ad3744f7fcd1c6c03fed1b40ec5ef" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175400093&partnerID=40&md5=ef3ad3744f7fcd1c6c03fed1b40ec5ef</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Joint Learning Model for Low-Resource Agglutinative Language Morphological Tagging

  • Popis výsledku v původním jazyce

    "Due to the lack of data resources, rule-based or transfer learning is mainly used in the morphological tagging of low-resource languages. However, these methods require expert knowledge, ignore contextual features, and have error propagation. Therefore, we propose a joint morphological tagger for low-resource agglutinative languages to alleviate the above challenges. First, we represent the contextual input with multi-dimensional features of agglutinative words. Second, joint training reduces the direct impact of part-of-speech errors on morphological features and increases the indirect influence between the two types of labels through a fusion mechanism. Finally, our model separately predicts part-of-speech and morphological features. Part-of-speech tagging is regarded as sequence tagging. When predicting morphological features, two-label adjacency graphs are dynamically reconstructed by integrating multilingual global features and monolingual local features. Then, a graph convolution network is used to learn the higherorder intersection of labels. A series of experiments show that the proposed model in this paper is superior to other comparative models. © 2023 Association for Computational Linguistics."

  • Název v anglickém jazyce

    Joint Learning Model for Low-Resource Agglutinative Language Morphological Tagging

  • Popis výsledku anglicky

    "Due to the lack of data resources, rule-based or transfer learning is mainly used in the morphological tagging of low-resource languages. However, these methods require expert knowledge, ignore contextual features, and have error propagation. Therefore, we propose a joint morphological tagger for low-resource agglutinative languages to alleviate the above challenges. First, we represent the contextual input with multi-dimensional features of agglutinative words. Second, joint training reduces the direct impact of part-of-speech errors on morphological features and increases the indirect influence between the two types of labels through a fusion mechanism. Finally, our model separately predicts part-of-speech and morphological features. Part-of-speech tagging is regarded as sequence tagging. When predicting morphological features, two-label adjacency graphs are dynamically reconstructed by integrating multilingual global features and monolingual local features. Then, a graph convolution network is used to learn the higherorder intersection of labels. A series of experiments show that the proposed model in this paper is superior to other comparative models. © 2023 Association for Computational Linguistics."

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    "Proc. Annu. Meet. Assoc. Comput Linguist."

  • ISBN

    978-195942993-7

  • ISSN

    0736-587X

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    27-37

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    Cham

  • Datum konání akce

    1. 1. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku