Extracting and classifying exceptional COVID-19 measures from multilingual legal texts: The merits and limitations of automated approaches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A7GQ6Q7FE" target="_blank" >RIV/00216208:11320/23:7GQ6Q7FE - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173470159&doi=10.1111%2frego.12557&partnerID=40&md5=8d6498accbc87a59b539b94869c3c4dd" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85173470159&doi=10.1111%2frego.12557&partnerID=40&md5=8d6498accbc87a59b539b94869c3c4dd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/rego.12557" target="_blank" >10.1111/rego.12557</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extracting and classifying exceptional COVID-19 measures from multilingual legal texts: The merits and limitations of automated approaches
Popis výsledku v původním jazyce
"This paper contributes to ongoing scholarly debates on the merits and limitations of computational legal text analysis by reflecting on the results of a research project documenting exceptional COVID-19 management measures in Europe. The variety of exceptional measures adopted in countries characterized by different legal systems and natural languages, as well as the rapid evolution of such measures, pose considerable challenges to manual textual analysis methods traditionally used in the social sciences. To address these challenges, we develop a supervised classifier to support the manual coding of exceptional policies by a multinational team of human coders. After presenting the results of various natural language processing (NLP) experiments, we show that human-in-the-loop approaches to computational text analysis outperform unsupervised approaches in accurately extracting policy events from legal texts. We draw lessons from our experience to ensure the successful integration of NLP methods into social science research agendas. © 2023 The Authors. Regulation & Governance published by John Wiley & Sons Australia, Ltd."
Název v anglickém jazyce
Extracting and classifying exceptional COVID-19 measures from multilingual legal texts: The merits and limitations of automated approaches
Popis výsledku anglicky
"This paper contributes to ongoing scholarly debates on the merits and limitations of computational legal text analysis by reflecting on the results of a research project documenting exceptional COVID-19 management measures in Europe. The variety of exceptional measures adopted in countries characterized by different legal systems and natural languages, as well as the rapid evolution of such measures, pose considerable challenges to manual textual analysis methods traditionally used in the social sciences. To address these challenges, we develop a supervised classifier to support the manual coding of exceptional policies by a multinational team of human coders. After presenting the results of various natural language processing (NLP) experiments, we show that human-in-the-loop approaches to computational text analysis outperform unsupervised approaches in accurately extracting policy events from legal texts. We draw lessons from our experience to ensure the successful integration of NLP methods into social science research agendas. © 2023 The Authors. Regulation & Governance published by John Wiley & Sons Australia, Ltd."
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Regulation and Governance"
ISSN
1748-5983
e-ISSN
—
Svazek periodika
""
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85173470159