Investigating UD Treebanks via Dataset Difficulty Measures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A9PMAMTK2" target="_blank" >RIV/00216208:11320/23:9PMAMTK2 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159860608&partnerID=40&md5=cbc54358d55d6c2e13939ac8062137cc" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159860608&partnerID=40&md5=cbc54358d55d6c2e13939ac8062137cc</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigating UD Treebanks via Dataset Difficulty Measures
Popis výsledku v původním jazyce
"Treebanks annotated with Universal Dependencies (UD) are currently available for over 100 languages and are widely utilized by the community. However, their inherent quality characteristics are hard to measure and are only partially reflected in parser evaluations via accuracy metrics like LAS. In this study, we analyze a large subset of the UD treebanks using three recently proposed accuracy-free dataset analysis methods: dataset cartography, V-information, and minimum description length. Each method provides insights about UD treebanks that would remain undetected if only LAS was considered. Specifically, we identify a number of treebanks that, despite yielding high LAS, contain very little information that is usable by a parser to surpass what can be achieved by simple heuristics. Furthermore, we make note of several treebanks that score consistently low across numerous metrics, indicating a high degree of noise or annotation inconsistency present therein. © 2023 Association for Computational Linguistics."
Název v anglickém jazyce
Investigating UD Treebanks via Dataset Difficulty Measures
Popis výsledku anglicky
"Treebanks annotated with Universal Dependencies (UD) are currently available for over 100 languages and are widely utilized by the community. However, their inherent quality characteristics are hard to measure and are only partially reflected in parser evaluations via accuracy metrics like LAS. In this study, we analyze a large subset of the UD treebanks using three recently proposed accuracy-free dataset analysis methods: dataset cartography, V-information, and minimum description length. Each method provides insights about UD treebanks that would remain undetected if only LAS was considered. Specifically, we identify a number of treebanks that, despite yielding high LAS, contain very little information that is usable by a parser to surpass what can be achieved by simple heuristics. Furthermore, we make note of several treebanks that score consistently low across numerous metrics, indicating a high degree of noise or annotation inconsistency present therein. © 2023 Association for Computational Linguistics."
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
"EACL - Conf. Eur. Chapter Assoc. Comput. Linguist., Proc. Conf."
ISBN
978-195942944-9
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
1076-1089
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
Dubrovnik
Místo konání akce
Dubrovnik
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—