Improving the performance of graph based dependency parsing by guiding bi-affine layer with augmented global and local features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AE2K66JV3" target="_blank" >RIV/00216208:11320/23:E2K66JV3 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148029592&doi=10.1016%2fj.iswa.2023.200190&partnerID=40&md5=9076de4c2f23b6d5f724e67a11bfd3bb" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148029592&doi=10.1016%2fj.iswa.2023.200190&partnerID=40&md5=9076de4c2f23b6d5f724e67a11bfd3bb</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.iswa.2023.200190" target="_blank" >10.1016/j.iswa.2023.200190</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving the performance of graph based dependency parsing by guiding bi-affine layer with augmented global and local features
Popis výsledku v původním jazyce
"The growing interaction between humans and machines raises the necessity to more sophisticated tools for natural language understanding. Dependency parsing is crucial for capturing the semantics of a sentence. Although graph-based dependency parsing approaches outperform transition-based methods because they are not exposed to error propagation as their compeer, their feature space is comparatively limited. Thus, the main issue with graph-based parsing is how to expand the set of features to improve performance. In this research, we propose to expand the feature space of graph-based parsers. To benefit from the global meaning of the entire sentence content, we employee the sentence representation as an additional token feature. Also, to highlight local word collaborations that build sub-tree structures, we use convolutional neural network layers over token embeddings. We achieve the state-of-art results for Turkish, English, Hungarian, and Korean by getting the unlabeled and labeled attachment scores respectively on the test sets; 82.64% and 76.35% on Turkish IMST, 93.36% and 91.34% on English EWT, 90.85% and 87.39% on Hungarian Szeged, 92.44% and 89.58% on Korean GSD treebanks. Our experimental findings show that augmented global and local features empower the performance of graph-based dependency parsers. © 2023 The Author(s)"
Název v anglickém jazyce
Improving the performance of graph based dependency parsing by guiding bi-affine layer with augmented global and local features
Popis výsledku anglicky
"The growing interaction between humans and machines raises the necessity to more sophisticated tools for natural language understanding. Dependency parsing is crucial for capturing the semantics of a sentence. Although graph-based dependency parsing approaches outperform transition-based methods because they are not exposed to error propagation as their compeer, their feature space is comparatively limited. Thus, the main issue with graph-based parsing is how to expand the set of features to improve performance. In this research, we propose to expand the feature space of graph-based parsers. To benefit from the global meaning of the entire sentence content, we employee the sentence representation as an additional token feature. Also, to highlight local word collaborations that build sub-tree structures, we use convolutional neural network layers over token embeddings. We achieve the state-of-art results for Turkish, English, Hungarian, and Korean by getting the unlabeled and labeled attachment scores respectively on the test sets; 82.64% and 76.35% on Turkish IMST, 93.36% and 91.34% on English EWT, 90.85% and 87.39% on Hungarian Szeged, 92.44% and 89.58% on Korean GSD treebanks. Our experimental findings show that augmented global and local features empower the performance of graph-based dependency parsers. © 2023 The Author(s)"
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Intelligent Systems with Applications"
ISSN
2667-3053
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85148029592