Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving the performance of graph based dependency parsing by guiding bi-affine layer with augmented global and local features

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AE2K66JV3" target="_blank" >RIV/00216208:11320/23:E2K66JV3 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148029592&doi=10.1016%2fj.iswa.2023.200190&partnerID=40&md5=9076de4c2f23b6d5f724e67a11bfd3bb" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148029592&doi=10.1016%2fj.iswa.2023.200190&partnerID=40&md5=9076de4c2f23b6d5f724e67a11bfd3bb</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.iswa.2023.200190" target="_blank" >10.1016/j.iswa.2023.200190</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving the performance of graph based dependency parsing by guiding bi-affine layer with augmented global and local features

  • Popis výsledku v původním jazyce

    "The growing interaction between humans and machines raises the necessity to more sophisticated tools for natural language understanding. Dependency parsing is crucial for capturing the semantics of a sentence. Although graph-based dependency parsing approaches outperform transition-based methods because they are not exposed to error propagation as their compeer, their feature space is comparatively limited. Thus, the main issue with graph-based parsing is how to expand the set of features to improve performance. In this research, we propose to expand the feature space of graph-based parsers. To benefit from the global meaning of the entire sentence content, we employee the sentence representation as an additional token feature. Also, to highlight local word collaborations that build sub-tree structures, we use convolutional neural network layers over token embeddings. We achieve the state-of-art results for Turkish, English, Hungarian, and Korean by getting the unlabeled and labeled attachment scores respectively on the test sets; 82.64% and 76.35% on Turkish IMST, 93.36% and 91.34% on English EWT, 90.85% and 87.39% on Hungarian Szeged, 92.44% and 89.58% on Korean GSD treebanks. Our experimental findings show that augmented global and local features empower the performance of graph-based dependency parsers. © 2023 The Author(s)"

  • Název v anglickém jazyce

    Improving the performance of graph based dependency parsing by guiding bi-affine layer with augmented global and local features

  • Popis výsledku anglicky

    "The growing interaction between humans and machines raises the necessity to more sophisticated tools for natural language understanding. Dependency parsing is crucial for capturing the semantics of a sentence. Although graph-based dependency parsing approaches outperform transition-based methods because they are not exposed to error propagation as their compeer, their feature space is comparatively limited. Thus, the main issue with graph-based parsing is how to expand the set of features to improve performance. In this research, we propose to expand the feature space of graph-based parsers. To benefit from the global meaning of the entire sentence content, we employee the sentence representation as an additional token feature. Also, to highlight local word collaborations that build sub-tree structures, we use convolutional neural network layers over token embeddings. We achieve the state-of-art results for Turkish, English, Hungarian, and Korean by getting the unlabeled and labeled attachment scores respectively on the test sets; 82.64% and 76.35% on Turkish IMST, 93.36% and 91.34% on English EWT, 90.85% and 87.39% on Hungarian Szeged, 92.44% and 89.58% on Korean GSD treebanks. Our experimental findings show that augmented global and local features empower the performance of graph-based dependency parsers. © 2023 The Author(s)"

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "Intelligent Systems with Applications"

  • ISSN

    2667-3053

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    1-14

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85148029592