Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ZGUL: Zero-shot Generalization to Unseen Languages using Multi-source Ensembling of Language Adapters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AFK2RRMUX" target="_blank" >RIV/00216208:11320/23:FK2RRMUX - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://arxiv.org/abs/2310.16393" target="_blank" >http://arxiv.org/abs/2310.16393</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ZGUL: Zero-shot Generalization to Unseen Languages using Multi-source Ensembling of Language Adapters

  • Popis výsledku v původním jazyce

    "We tackle the problem of zero-shot cross-lingual transfer in NLP tasks via the use of language adapters (LAs). Most of the earlier works have explored training with adapter of a single source (often English), and testing either using the target LA or LA of another related language. Training target LA requires unlabeled data, which may not be readily available for low resource unseen languages: those that are neither seen by the underlying multilingual language model (e.g., mBERT), nor do we have any (labeled or unlabeled) data for them. We posit that for more effective cross-lingual transfer, instead of just one source LA, we need to leverage LAs of multiple (linguistically or geographically related) source languages, both at train and test-time - which we investigate via our novel neural architecture, ZGUL. Extensive experimentation across four language groups, covering 15 unseen target languages, demonstrates improvements of up to 3.2 average F1 points over standard fine-tuning and other strong baselines on POS tagging and NER tasks. We also extend ZGUL to settings where either (1) some unlabeled data or (2) few-shot training examples are available for the target language. We find that ZGUL continues to outperform baselines in these settings too."

  • Název v anglickém jazyce

    ZGUL: Zero-shot Generalization to Unseen Languages using Multi-source Ensembling of Language Adapters

  • Popis výsledku anglicky

    "We tackle the problem of zero-shot cross-lingual transfer in NLP tasks via the use of language adapters (LAs). Most of the earlier works have explored training with adapter of a single source (often English), and testing either using the target LA or LA of another related language. Training target LA requires unlabeled data, which may not be readily available for low resource unseen languages: those that are neither seen by the underlying multilingual language model (e.g., mBERT), nor do we have any (labeled or unlabeled) data for them. We posit that for more effective cross-lingual transfer, instead of just one source LA, we need to leverage LAs of multiple (linguistically or geographically related) source languages, both at train and test-time - which we investigate via our novel neural architecture, ZGUL. Extensive experimentation across four language groups, covering 15 unseen target languages, demonstrates improvements of up to 3.2 average F1 points over standard fine-tuning and other strong baselines on POS tagging and NER tasks. We also extend ZGUL to settings where either (1) some unlabeled data or (2) few-shot training examples are available for the target language. We find that ZGUL continues to outperform baselines in these settings too."

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů