Annotation Protocol for Textbook Enrichment with Prerequisite Knowledge Graph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AGRJQIQYM" target="_blank" >RIV/00216208:11320/23:GRJQIQYM - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171573789&doi=10.1007%2fs10758-023-09682-6&partnerID=40&md5=6e54f9eb63ed6025eb618d094835ed75" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85171573789&doi=10.1007%2fs10758-023-09682-6&partnerID=40&md5=6e54f9eb63ed6025eb618d094835ed75</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10758-023-09682-6" target="_blank" >10.1007/s10758-023-09682-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Annotation Protocol for Textbook Enrichment with Prerequisite Knowledge Graph
Popis výsledku v původním jazyce
"Extracting and formally representing the knowledge embedded in textbooks, such as the concepts explained and the relations between them, can support the provision of advanced knowledge-based services for learning environments and digital libraries. In this paper, we consider a specific type of relation in textbooks referred to as prerequisite relations (PR). PRs represent precedence relations between concepts aimed to provide the reader with the knowledge needed to understand a further concept(s). Their annotation in educational texts produces datasets that can be represented as a graph of concepts connected by PRs. However, building good-quality and reliable datasets of PRs from a textbook is still an open issue, not just for automated annotation methods but even for manual annotation. In turn, the lack of good-quality datasets and well-defined criteria to identify PRs affect the development and validation of automated methods for prerequisite identification. As a contribution to this issue, in this paper, we propose PREAP, a protocol for the annotation of prerequisite relations in textbooks aimed at obtaining reliable annotated data that can be shared, compared, and reused in the research community. PREAP defines a novel textbook-driven annotation method aimed to capture the structure of prerequisites underlying the text. The protocol has been evaluated against baseline methods for manual and automatic annotation. The findings show that PREAP enables the creation of prerequisite knowledge graphs that have higher inter-annotator agreement, accuracy, and alignment with text than the baseline methods. This suggests that the protocol is able to accurately capture the PRs expressed in the text. Furthermore, the findings show that the time required to complete the annotation using PREAP are significantly shorter than with the other manual baseline methods. The paper includes also guidelines for using PREAP in three annotation scenarios, experimentally tested. We also provide example datasets and a user interface that we developed to support prerequisite annotation. © 2023, The Author(s)."
Název v anglickém jazyce
Annotation Protocol for Textbook Enrichment with Prerequisite Knowledge Graph
Popis výsledku anglicky
"Extracting and formally representing the knowledge embedded in textbooks, such as the concepts explained and the relations between them, can support the provision of advanced knowledge-based services for learning environments and digital libraries. In this paper, we consider a specific type of relation in textbooks referred to as prerequisite relations (PR). PRs represent precedence relations between concepts aimed to provide the reader with the knowledge needed to understand a further concept(s). Their annotation in educational texts produces datasets that can be represented as a graph of concepts connected by PRs. However, building good-quality and reliable datasets of PRs from a textbook is still an open issue, not just for automated annotation methods but even for manual annotation. In turn, the lack of good-quality datasets and well-defined criteria to identify PRs affect the development and validation of automated methods for prerequisite identification. As a contribution to this issue, in this paper, we propose PREAP, a protocol for the annotation of prerequisite relations in textbooks aimed at obtaining reliable annotated data that can be shared, compared, and reused in the research community. PREAP defines a novel textbook-driven annotation method aimed to capture the structure of prerequisites underlying the text. The protocol has been evaluated against baseline methods for manual and automatic annotation. The findings show that PREAP enables the creation of prerequisite knowledge graphs that have higher inter-annotator agreement, accuracy, and alignment with text than the baseline methods. This suggests that the protocol is able to accurately capture the PRs expressed in the text. Furthermore, the findings show that the time required to complete the annotation using PREAP are significantly shorter than with the other manual baseline methods. The paper includes also guidelines for using PREAP in three annotation scenarios, experimentally tested. We also provide example datasets and a user interface that we developed to support prerequisite annotation. © 2023, The Author(s)."
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Technology, Knowledge and Learning"
ISSN
2211-1662
e-ISSN
—
Svazek periodika
""
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
1-32
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85171573789