Learning to Answer Multilingual and Code-Mixed Questions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AK4BY2CJQ" target="_blank" >RIV/00216208:11320/23:K4BY2CJQ - isvavai.cz</a>
Výsledek na webu
<a href="http://arxiv.org/abs/2211.07522" target="_blank" >http://arxiv.org/abs/2211.07522</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2211.07522" target="_blank" >10.48550/arXiv.2211.07522</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning to Answer Multilingual and Code-Mixed Questions
Popis výsledku v původním jazyce
"Question-answering (QA) that comes naturally to humans is a critical component in seamless human-computer interaction. It has emerged as one of the most convenient and natural methods to interact with the web and is especially desirable in voice-controlled environments. Despite being one of the oldest research areas, the current QA system faces the critical challenge of handling multilingual queries. To build an Artificial Intelligent (AI) agent that can serve multilingual end users, a QA system is required to be language versatile and tailored to suit the multilingual environment. Recent advances in QA models have enabled surpassing human performance primarily due to the availability of a sizable amount of high-quality datasets. However, the majority of such annotated datasets are expensive to create and are only confined to the English language, making it challenging to acknowledge progress in foreign languages. Therefore, to measure a similar improvement in the multilingual QA system, it is necessary to invest in high-quality multilingual evaluation benchmarks. In this dissertation, we focus on advancing QA techniques for handling end-user queries in multilingual environments. This dissertation consists of two parts. In the first part, we explore multilingualism and a new dimension of multilingualism referred to as code-mixing. Second, we propose a technique to solve the task of multi-hop question generation by exploiting multiple documents. Experiments show our models achieve state-of-the-art performance on answer extraction, ranking, and generation tasks on multiple domains of MQA, VQA, and language generation. The proposed techniques are generic and can be widely used in various domains and languages to advance QA systems."
Název v anglickém jazyce
Learning to Answer Multilingual and Code-Mixed Questions
Popis výsledku anglicky
"Question-answering (QA) that comes naturally to humans is a critical component in seamless human-computer interaction. It has emerged as one of the most convenient and natural methods to interact with the web and is especially desirable in voice-controlled environments. Despite being one of the oldest research areas, the current QA system faces the critical challenge of handling multilingual queries. To build an Artificial Intelligent (AI) agent that can serve multilingual end users, a QA system is required to be language versatile and tailored to suit the multilingual environment. Recent advances in QA models have enabled surpassing human performance primarily due to the availability of a sizable amount of high-quality datasets. However, the majority of such annotated datasets are expensive to create and are only confined to the English language, making it challenging to acknowledge progress in foreign languages. Therefore, to measure a similar improvement in the multilingual QA system, it is necessary to invest in high-quality multilingual evaluation benchmarks. In this dissertation, we focus on advancing QA techniques for handling end-user queries in multilingual environments. This dissertation consists of two parts. In the first part, we explore multilingualism and a new dimension of multilingualism referred to as code-mixing. Second, we propose a technique to solve the task of multi-hop question generation by exploiting multiple documents. Experiments show our models achieve state-of-the-art performance on answer extraction, ranking, and generation tasks on multiple domains of MQA, VQA, and language generation. The proposed techniques are generic and can be widely used in various domains and languages to advance QA systems."
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů