Advancing Hungarian Text Processing with HuSpaCy: Efficient and Accurate NLP Pipelines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3APPL8V2SZ" target="_blank" >RIV/00216208:11320/23:PPL8V2SZ - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172014448&doi=10.1007%2f978-3-031-40498-6_6&partnerID=40&md5=4028296fb87c614e412d23ab8d6349f6" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172014448&doi=10.1007%2f978-3-031-40498-6_6&partnerID=40&md5=4028296fb87c614e412d23ab8d6349f6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-40498-6_6" target="_blank" >10.1007/978-3-031-40498-6_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advancing Hungarian Text Processing with HuSpaCy: Efficient and Accurate NLP Pipelines
Popis výsledku v původním jazyce
"This paper presents a set of industrial-grade text processing models for Hungarian that achieve near state-of-the-art performance while balancing resource efficiency and accuracy. Models have been implemented in the spaCy framework, extending the HuSpaCy toolkit with several improvements to its architecture. Compared to existing NLP tools for Hungarian, all of our pipelines feature all basic text processing steps including tokenization, sentence-boundary detection, part-of-speech tagging, morphological feature tagging, lemmatization, dependency parsing and named entity recognition with high accuracy and throughput. We thoroughly evaluated the proposed enhancements, compared the pipelines with state-of-the-art tools and demonstrated the competitive performance of the new models in all text preprocessing steps. All experiments are reproducible and the pipelines are freely available under a permissive license. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG."
Název v anglickém jazyce
Advancing Hungarian Text Processing with HuSpaCy: Efficient and Accurate NLP Pipelines
Popis výsledku anglicky
"This paper presents a set of industrial-grade text processing models for Hungarian that achieve near state-of-the-art performance while balancing resource efficiency and accuracy. Models have been implemented in the spaCy framework, extending the HuSpaCy toolkit with several improvements to its architecture. Compared to existing NLP tools for Hungarian, all of our pipelines feature all basic text processing steps including tokenization, sentence-boundary detection, part-of-speech tagging, morphological feature tagging, lemmatization, dependency parsing and named entity recognition with high accuracy and throughput. We thoroughly evaluated the proposed enhancements, compared the pipelines with state-of-the-art tools and demonstrated the competitive performance of the new models in all text preprocessing steps. All experiments are reproducible and the pipelines are freely available under a permissive license. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG."
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
"Lect. Notes Comput. Sci."
ISBN
978-303140497-9
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
58-69
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
—
Místo konání akce
Cham
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—