Analysing networks of networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AWWEA26JE" target="_blank" >RIV/00216208:11320/23:WWEA26JE - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150456850&doi=10.1016%2fj.socnet.2023.02.002&partnerID=40&md5=f888d2c28b2fc13da563e04f2483fc2b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150456850&doi=10.1016%2fj.socnet.2023.02.002&partnerID=40&md5=f888d2c28b2fc13da563e04f2483fc2b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.socnet.2023.02.002" target="_blank" >10.1016/j.socnet.2023.02.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysing networks of networks
Popis výsledku v původním jazyce
"We consider data with multiple observations or reports on a network in the case when these networks themselves are connected through some form of network ties. We could take the example of a cognitive social structure where there is another type of tie connecting the actors that provide the reports; or the study of interpersonal spillover effects from one cultural domain to another facilitated by the social ties. Another example is when the individual semantic structures are represented as semantic networks of a group of actors and connected through these actors’ social ties to constitute knowledge of a social group. How to jointly represent the two types of networks is not trivial as the layers and not the nodes of the layers of the reported networks are coupled through a network on the reports. We propose to transform the different multiple networks using line graphs, where actors are affiliated with ties represented as nodes, and represent the totality of the different types of ties as a multilevel network. This affords studying the associations between the social network and the reports as well as the alignment of the reports to a criterion graph. We illustrate how the procedure can be applied to studying the social construction of knowledge in local flood management groups. Here we use multilevel exponential random graph models but the representation also lends itself to stochastic actor-oriented models, multilevel blockmodels, and any model capable of handling multilevel networks. © 2023 The Authors"
Název v anglickém jazyce
Analysing networks of networks
Popis výsledku anglicky
"We consider data with multiple observations or reports on a network in the case when these networks themselves are connected through some form of network ties. We could take the example of a cognitive social structure where there is another type of tie connecting the actors that provide the reports; or the study of interpersonal spillover effects from one cultural domain to another facilitated by the social ties. Another example is when the individual semantic structures are represented as semantic networks of a group of actors and connected through these actors’ social ties to constitute knowledge of a social group. How to jointly represent the two types of networks is not trivial as the layers and not the nodes of the layers of the reported networks are coupled through a network on the reports. We propose to transform the different multiple networks using line graphs, where actors are affiliated with ties represented as nodes, and represent the totality of the different types of ties as a multilevel network. This affords studying the associations between the social network and the reports as well as the alignment of the reports to a criterion graph. We illustrate how the procedure can be applied to studying the social construction of knowledge in local flood management groups. Here we use multilevel exponential random graph models but the representation also lends itself to stochastic actor-oriented models, multilevel blockmodels, and any model capable of handling multilevel networks. © 2023 The Authors"
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Social Networks"
ISSN
0378-8733
e-ISSN
—
Svazek periodika
74
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
102-117
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85150456850