Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Assessing BERT’s ability to learn Italian syntax: a study on null-subject and agreement phenomena

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AXH2VDDW6" target="_blank" >RIV/00216208:11320/23:XH2VDDW6 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105463216&doi=10.1007%2fs12652-021-03297-4&partnerID=40&md5=7c005e809e4bf3ce2c40bc3a356f9e0a" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105463216&doi=10.1007%2fs12652-021-03297-4&partnerID=40&md5=7c005e809e4bf3ce2c40bc3a356f9e0a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s12652-021-03297-4" target="_blank" >10.1007/s12652-021-03297-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Assessing BERT’s ability to learn Italian syntax: a study on null-subject and agreement phenomena

  • Popis výsledku v původním jazyce

    "The work presented in this paper investigates the ability of BERT neural language model pretrained in Italian to embed syntactic dependency relationships into its layers, by approximating a Dependency Parse Tree. To this end, a structural probe, namely a supervised model able to extract linguistic structures from a language model, has been trained leveraging the contextual embeddings from the layers of BERT. An experimental assessment has been performed using an Italian version of BERT-base model and a set of datasets for Italian labelled with Universal Dependencies formalism. The results, achieved using standard metrics of dependency parsers, have shown that a knowledge of the Italian syntax is embedded in central-upper layers of the BERT model, according to what observed in literature for the English case. In addition, the probe has been also used to experimentally evaluate the BERT model behaviour in case of two specific syntactic phenomena in Italian, namely null-subject and subject-verb-agreement, showing better performance than an Italian state-of-the-art parser. These findings can open a path for the development of new hybrid approaches, exploiting the probe to integrate or improve limits or weaknesses in analysing articulated constructions of Italian syntax, traditionally complex to be parsed. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature."

  • Název v anglickém jazyce

    Assessing BERT’s ability to learn Italian syntax: a study on null-subject and agreement phenomena

  • Popis výsledku anglicky

    "The work presented in this paper investigates the ability of BERT neural language model pretrained in Italian to embed syntactic dependency relationships into its layers, by approximating a Dependency Parse Tree. To this end, a structural probe, namely a supervised model able to extract linguistic structures from a language model, has been trained leveraging the contextual embeddings from the layers of BERT. An experimental assessment has been performed using an Italian version of BERT-base model and a set of datasets for Italian labelled with Universal Dependencies formalism. The results, achieved using standard metrics of dependency parsers, have shown that a knowledge of the Italian syntax is embedded in central-upper layers of the BERT model, according to what observed in literature for the English case. In addition, the probe has been also used to experimentally evaluate the BERT model behaviour in case of two specific syntactic phenomena in Italian, namely null-subject and subject-verb-agreement, showing better performance than an Italian state-of-the-art parser. These findings can open a path for the development of new hybrid approaches, exploiting the probe to integrate or improve limits or weaknesses in analysing articulated constructions of Italian syntax, traditionally complex to be parsed. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature."

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "Journal of Ambient Intelligence and Humanized Computing"

  • ISSN

    1868-5137

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    289-303

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85105463216