Mechanistic insight and first principle analysis of cation-inverted zinc ferrite nanostructure: A paradigm for ppb-level room temperature NOx sensor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10481802" target="_blank" >RIV/00216208:11320/24:10481802 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W_uq6Qcy10" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W_uq6Qcy10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2024.151873" target="_blank" >10.1016/j.cej.2024.151873</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanistic insight and first principle analysis of cation-inverted zinc ferrite nanostructure: A paradigm for ppb-level room temperature NOx sensor
Popis výsledku v původním jazyce
Herein, we adopted a new paradigm for developing a high-performance gas sensor by leveraging the mixed spinel ZnFe2O4 structure (mZFO) to enhance the adsorption of NOx molecules. Material characterization reveals the formation of the mZFO due to the cation inversion in lattice sites. The estimated value of the inversion degree is observed to shift from 0.78 to 0.39 with an increase in the calcination temperature. The mZFO nanoparticles calcined at 500 degrees C show exceptional sensing performance due to their suitable grain size (-2 times Debye length), neck diameter, and surface area. The sensing studies conducted at various NOx concentrations indicate that the sensor can detect ppb level of NOx with a detection limit of about 9 ppb at room temperature. The detailed sensing mechanism is elucidated based on the density functional theory calculations (DFT) and Bader charge analysis. The outstanding sensor performance is attributed to the formation of a mixed spinel structure, wherein the adsorption energy of NOx (--0.6 eV) in the presence of surface adsorbed oxygen is higher than that of the normal spinel structure (--0.1 eV). Furthermore, the sensor exhibited a fast response and recovery times (7 and 92 s at 800 ppb NO2), excellent stability, and selectivity. The practical suitability of the mZFO sensor was studied by analyzing the vehicle exhaust emissions. We strongly believe this work would pave a novel approach to developing a high-potential gas sensor by modifying the cation distributions in the spinel ferrites.
Název v anglickém jazyce
Mechanistic insight and first principle analysis of cation-inverted zinc ferrite nanostructure: A paradigm for ppb-level room temperature NOx sensor
Popis výsledku anglicky
Herein, we adopted a new paradigm for developing a high-performance gas sensor by leveraging the mixed spinel ZnFe2O4 structure (mZFO) to enhance the adsorption of NOx molecules. Material characterization reveals the formation of the mZFO due to the cation inversion in lattice sites. The estimated value of the inversion degree is observed to shift from 0.78 to 0.39 with an increase in the calcination temperature. The mZFO nanoparticles calcined at 500 degrees C show exceptional sensing performance due to their suitable grain size (-2 times Debye length), neck diameter, and surface area. The sensing studies conducted at various NOx concentrations indicate that the sensor can detect ppb level of NOx with a detection limit of about 9 ppb at room temperature. The detailed sensing mechanism is elucidated based on the density functional theory calculations (DFT) and Bader charge analysis. The outstanding sensor performance is attributed to the formation of a mixed spinel structure, wherein the adsorption energy of NOx (--0.6 eV) in the presence of surface adsorbed oxygen is higher than that of the normal spinel structure (--0.1 eV). Furthermore, the sensor exhibited a fast response and recovery times (7 and 92 s at 800 ppb NO2), excellent stability, and selectivity. The practical suitability of the mZFO sensor was studied by analyzing the vehicle exhaust emissions. We strongly believe this work would pave a novel approach to developing a high-potential gas sensor by modifying the cation distributions in the spinel ferrites.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
1873-3212
Svazek periodika
490
Číslo periodika v rámci svazku
červen
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
151873
Kód UT WoS článku
001239929700001
EID výsledku v databázi Scopus
2-s2.0-85192243314