Martian bow shock and magnetic pileup boundary models based on machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484600" target="_blank" >RIV/00216208:11320/24:10484600 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5tHQJVvKhd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5tHQJVvKhd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asr.2024.03.030" target="_blank" >10.1016/j.asr.2024.03.030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Martian bow shock and magnetic pileup boundary models based on machine learning
Popis výsledku v původním jazyce
Traditional Martian bow shock and magnetic pileup (magnetopause) boundary models are based on the fitting of free parameters in a prescribed formula. The form of the formula, fitted data, and considered controlling parameters distinguish the individual models from each other. However, all these models have one thing in common: the shape of the boundary and the parametric dependence assumed are fixed by the prescribed formula. The fitted data set typically consists of individual identified boundary crossings. This approach can suffer from a significant bias, as the boundary crossings are more likely to be identified in regions where a spacecraft spends more time. In this study, we use an automated region classification of the data measured by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to solar wind, magnetosheath, or magnetosphere. This is achieved by applying the Support Vector Machine method to individual spacecraft half-orbits (from periapsis to apoapsis or vice versa). Two different models of the locations of the bow shock and magnetic pileup boundaries are then constructed based on neural networks: i) a model trained using the classified data, and ii) a model trained using individual identified boundary crossings. As compared to formal empirical modeling efforts, the neural network models do not assume any prescribed shape/distance formula. Optimal model parameterization (considering the solar wind dynamic pressure, solar ionizing flux, crustal magnetic field magnitude, Alfve<acute accent>n Mach number, and interplanetary magnetic field magnitude) is discussed and the model performance evaluated. (c) 2024 COSPAR. Published by Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Martian bow shock and magnetic pileup boundary models based on machine learning
Popis výsledku anglicky
Traditional Martian bow shock and magnetic pileup (magnetopause) boundary models are based on the fitting of free parameters in a prescribed formula. The form of the formula, fitted data, and considered controlling parameters distinguish the individual models from each other. However, all these models have one thing in common: the shape of the boundary and the parametric dependence assumed are fixed by the prescribed formula. The fitted data set typically consists of individual identified boundary crossings. This approach can suffer from a significant bias, as the boundary crossings are more likely to be identified in regions where a spacecraft spends more time. In this study, we use an automated region classification of the data measured by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to solar wind, magnetosheath, or magnetosphere. This is achieved by applying the Support Vector Machine method to individual spacecraft half-orbits (from periapsis to apoapsis or vice versa). Two different models of the locations of the bow shock and magnetic pileup boundaries are then constructed based on neural networks: i) a model trained using the classified data, and ii) a model trained using individual identified boundary crossings. As compared to formal empirical modeling efforts, the neural network models do not assume any prescribed shape/distance formula. Optimal model parameterization (considering the solar wind dynamic pressure, solar ionizing flux, crustal magnetic field magnitude, Alfve<acute accent>n Mach number, and interplanetary magnetic field magnitude) is discussed and the model performance evaluated. (c) 2024 COSPAR. Published by Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LUAUS23152" target="_blank" >LUAUS23152: Elektrodynamika magnetosfér a ionosfér Země, Jupiteru a Marsu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Space Research
ISSN
0273-1177
e-ISSN
1879-1948
Svazek periodika
73
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
6298-6309
Kód UT WoS článku
001238205700001
EID výsledku v databázi Scopus
2-s2.0-85188747642