Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Martian bow shock and magnetic pileup boundary models based on machine learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484600" target="_blank" >RIV/00216208:11320/24:10484600 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5tHQJVvKhd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5tHQJVvKhd</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asr.2024.03.030" target="_blank" >10.1016/j.asr.2024.03.030</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Martian bow shock and magnetic pileup boundary models based on machine learning

  • Popis výsledku v původním jazyce

    Traditional Martian bow shock and magnetic pileup (magnetopause) boundary models are based on the fitting of free parameters in a prescribed formula. The form of the formula, fitted data, and considered controlling parameters distinguish the individual models from each other. However, all these models have one thing in common: the shape of the boundary and the parametric dependence assumed are fixed by the prescribed formula. The fitted data set typically consists of individual identified boundary crossings. This approach can suffer from a significant bias, as the boundary crossings are more likely to be identified in regions where a spacecraft spends more time. In this study, we use an automated region classification of the data measured by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to solar wind, magnetosheath, or magnetosphere. This is achieved by applying the Support Vector Machine method to individual spacecraft half-orbits (from periapsis to apoapsis or vice versa). Two different models of the locations of the bow shock and magnetic pileup boundaries are then constructed based on neural networks: i) a model trained using the classified data, and ii) a model trained using individual identified boundary crossings. As compared to formal empirical modeling efforts, the neural network models do not assume any prescribed shape/distance formula. Optimal model parameterization (considering the solar wind dynamic pressure, solar ionizing flux, crustal magnetic field magnitude, Alfve&lt;acute accent&gt;n Mach number, and interplanetary magnetic field magnitude) is discussed and the model performance evaluated. (c) 2024 COSPAR. Published by Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Martian bow shock and magnetic pileup boundary models based on machine learning

  • Popis výsledku anglicky

    Traditional Martian bow shock and magnetic pileup (magnetopause) boundary models are based on the fitting of free parameters in a prescribed formula. The form of the formula, fitted data, and considered controlling parameters distinguish the individual models from each other. However, all these models have one thing in common: the shape of the boundary and the parametric dependence assumed are fixed by the prescribed formula. The fitted data set typically consists of individual identified boundary crossings. This approach can suffer from a significant bias, as the boundary crossings are more likely to be identified in regions where a spacecraft spends more time. In this study, we use an automated region classification of the data measured by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to solar wind, magnetosheath, or magnetosphere. This is achieved by applying the Support Vector Machine method to individual spacecraft half-orbits (from periapsis to apoapsis or vice versa). Two different models of the locations of the bow shock and magnetic pileup boundaries are then constructed based on neural networks: i) a model trained using the classified data, and ii) a model trained using individual identified boundary crossings. As compared to formal empirical modeling efforts, the neural network models do not assume any prescribed shape/distance formula. Optimal model parameterization (considering the solar wind dynamic pressure, solar ionizing flux, crustal magnetic field magnitude, Alfve&lt;acute accent&gt;n Mach number, and interplanetary magnetic field magnitude) is discussed and the model performance evaluated. (c) 2024 COSPAR. Published by Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LUAUS23152" target="_blank" >LUAUS23152: Elektrodynamika magnetosfér a ionosfér Země, Jupiteru a Marsu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Space Research

  • ISSN

    0273-1177

  • e-ISSN

    1879-1948

  • Svazek periodika

    73

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    6298-6309

  • Kód UT WoS článku

    001238205700001

  • EID výsledku v databázi Scopus

    2-s2.0-85188747642