Annealing Behavior of a Mg-Y-Zn-Al Alloy Processed by Rapidly Solidified Ribbon Consolidation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484766" target="_blank" >RIV/00216208:11320/24:10484766 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=80TZZupP5S" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=80TZZupP5S</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma17184511" target="_blank" >10.3390/ma17184511</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Annealing Behavior of a Mg-Y-Zn-Al Alloy Processed by Rapidly Solidified Ribbon Consolidation
Popis výsledku v původním jazyce
Mg-Y-Zn-Al alloys processed by the rapidly solidified ribbon consolidation (RSRC) techniqueare candidate materials for structural applications due to their improved mechanical performance.Their outstanding mechanical strength is attributed to solute-enriched stacking faults(SESFs), which can form cluster-arranged layers (CALs) and cluster-arranged nanoplates (CANaPs)or complete the long-period stacking ordered (LPSO) phase. The thermal stability of these solutearrangements strongly influences mechanical performance at elevated temperatures. In this study, anRSRC-processed Mg-0.9%, Zn-2.05%, Y-0.15% Al (at%) alloy was heated at a rate of 0.666 K/s upto 833 K, a temperature very close to melting point. During annealing, in situ X-ray diffraction (XRD)measurements were performed using synchrotron radiation in order to monitor changes in the structure.These in situ XRD experiments were completed with ex situ electron microscopy investigationsbefore and after annealing. At 753 K and above, the ratio of the matrix lattice constants, c/a, decreasedconsiderably, which was restored during cooling. This decrease in c/a could be attributed to partialmelting in the volumes with high solute contents, causing a change in the chemical composition ofthe remaining solid material. In addition, the XRD intensity of the secondary phase increased at thebeginning of cooling and then remained unchanged, which was attributed to a long-range orderingof the solute-enriched phase. Both the matrix grains and the solute-enriched particles were coarsenedduring the heat treatment, as revealed by electron microscopy.
Název v anglickém jazyce
Annealing Behavior of a Mg-Y-Zn-Al Alloy Processed by Rapidly Solidified Ribbon Consolidation
Popis výsledku anglicky
Mg-Y-Zn-Al alloys processed by the rapidly solidified ribbon consolidation (RSRC) techniqueare candidate materials for structural applications due to their improved mechanical performance.Their outstanding mechanical strength is attributed to solute-enriched stacking faults(SESFs), which can form cluster-arranged layers (CALs) and cluster-arranged nanoplates (CANaPs)or complete the long-period stacking ordered (LPSO) phase. The thermal stability of these solutearrangements strongly influences mechanical performance at elevated temperatures. In this study, anRSRC-processed Mg-0.9%, Zn-2.05%, Y-0.15% Al (at%) alloy was heated at a rate of 0.666 K/s upto 833 K, a temperature very close to melting point. During annealing, in situ X-ray diffraction (XRD)measurements were performed using synchrotron radiation in order to monitor changes in the structure.These in situ XRD experiments were completed with ex situ electron microscopy investigationsbefore and after annealing. At 753 K and above, the ratio of the matrix lattice constants, c/a, decreasedconsiderably, which was restored during cooling. This decrease in c/a could be attributed to partialmelting in the volumes with high solute contents, causing a change in the chemical composition ofthe remaining solid material. In addition, the XRD intensity of the secondary phase increased at thebeginning of cooling and then remained unchanged, which was attributed to a long-range orderingof the solute-enriched phase. Both the matrix grains and the solute-enriched particles were coarsenedduring the heat treatment, as revealed by electron microscopy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/8F21011" target="_blank" >8F21011: Development of Advanced Magnesium Alloys for Multifunctional Applicants in Extreme Environments</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
1996-1944
Svazek periodika
2024
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
4511
Kód UT WoS článku
001323085400001
EID výsledku v databázi Scopus
2-s2.0-85205291319