Tackling Students’ Coding Assignments with LLMs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10485470" target="_blank" >RIV/00216208:11320/24:10485470 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3643795.3648389" target="_blank" >https://doi.org/10.1145/3643795.3648389</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3643795.3648389" target="_blank" >10.1145/3643795.3648389</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tackling Students’ Coding Assignments with LLMs
Popis výsledku v původním jazyce
State-of-the-art large language models (LLMs) have demonstrated an extraordinary ability to write computer code. This ability can be quite beneficial when integrated into an IDE to assist a programmer with basic coding. On the other hand, it may be misused by computer science students for cheating on coding tests or homework assignments. At present, knowledge about the exact capabilities and limitations of state-of-the-art LLMs is still inadequate. Furthermore, their capabilities have been changing quickly with each new release. In this paper, we present a dataset of 559 programming exercises in 10 programming languages collected from a system for evaluating coding assignments at our university. We have experimented with four well-known LLMs (GPT-3.5, GPT-4, Codey, Code Llama) and asked them to solve these assignments. The evaluation results are intriguing and provide insights into the strengths and weaknesses of the models. In particular, GPT-4 (which performed the best) is currently capable of solving 55% of all our exercises and achieved an average score of 86% on exercises from the introductory programming course (using the best of five generated solutions).
Název v anglickém jazyce
Tackling Students’ Coding Assignments with LLMs
Popis výsledku anglicky
State-of-the-art large language models (LLMs) have demonstrated an extraordinary ability to write computer code. This ability can be quite beneficial when integrated into an IDE to assist a programmer with basic coding. On the other hand, it may be misused by computer science students for cheating on coding tests or homework assignments. At present, knowledge about the exact capabilities and limitations of state-of-the-art LLMs is still inadequate. Furthermore, their capabilities have been changing quickly with each new release. In this paper, we present a dataset of 559 programming exercises in 10 programming languages collected from a system for evaluating coding assignments at our university. We have experimented with four well-known LLMs (GPT-3.5, GPT-4, Codey, Code Llama) and asked them to solve these assignments. The evaluation results are intriguing and provide insights into the strengths and weaknesses of the models. In particular, GPT-4 (which performed the best) is currently capable of solving 55% of all our exercises and achieved an average score of 86% on exercises from the introductory programming course (using the best of five generated solutions).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 1st International Workshop on Large Language Models for Code
ISBN
979-8-4007-0579-3
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Lisbon, Portugal
Datum konání akce
14. 4. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—