Electrochemical stability of biodegradable Zn-Cu alloys through machine-learning accelerated high-throughput discovery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10486115" target="_blank" >RIV/00216208:11320/24:10486115 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10255808
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bgpmHLUINw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bgpmHLUINw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4cp02307b" target="_blank" >10.1039/d4cp02307b</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electrochemical stability of biodegradable Zn-Cu alloys through machine-learning accelerated high-throughput discovery
Popis výsledku v původním jazyce
Zn-Cu alloys have attracted great attention as biodegradable alloys owing to their excellent mechanical properties and biocompatibility, with corrosion characteristics being crucial for their suitability for biomedical applications. However, the unresolved identification of intermetallic compounds in Zn-Cu alloys affecting corrosion and the complexity of the application environment hamper the understanding of their electrochemical behavior. Utilizing high-throughput first-principles calculations and machine-learning accelerated evolutionary algorithms for screening the most stable compounds in Zn-Cu systems, a dataset encompassing the formation energy of 2033 compounds is generated. It reveals that most of the experimentally reported Zn-Cu compounds can be replicated, especially the structure of R32 CuZn5 is first discovered which possesses the lowest formation energy of -0.050 eV per atom. Furthermore, the simulated X-ray diffraction pattern matches perfectly with the experimental ones. By formulating 342 potential electrochemical reactions based on the binary compounds, the Pourbaix diagrams for Zn-Cu alloys are constructed to clarify the fundamental competition between different phases and ions. The calculated equilibrium potential of CuZn5 is higher than that of Zn through the forward reaction Zn + CuZn5 reversible arrow CuZn5 + Zn2+ + 2e(-), resulting in microcell formation owing to the stronger charge density localization in Zn compared to CuZn5. The presence of chlorine accelerates the corrosion of Zn through the reaction Zn + CuZn5 + 6Cl(-) + 6H(2)O reversible arrow Cu + 6ZnOHCl + 6H(+) + 12e(-), where the formation of ZnOHCl disrupts the ZnO passive film and expands the corrosion pH range from 9.2 to 8.8. Our findings reveal an accurate quantitative corrosion mechanism for Zn-Cu alloys, providing an effective pathway to investigate the corrosion resistance of biodegradable alloys.
Název v anglickém jazyce
Electrochemical stability of biodegradable Zn-Cu alloys through machine-learning accelerated high-throughput discovery
Popis výsledku anglicky
Zn-Cu alloys have attracted great attention as biodegradable alloys owing to their excellent mechanical properties and biocompatibility, with corrosion characteristics being crucial for their suitability for biomedical applications. However, the unresolved identification of intermetallic compounds in Zn-Cu alloys affecting corrosion and the complexity of the application environment hamper the understanding of their electrochemical behavior. Utilizing high-throughput first-principles calculations and machine-learning accelerated evolutionary algorithms for screening the most stable compounds in Zn-Cu systems, a dataset encompassing the formation energy of 2033 compounds is generated. It reveals that most of the experimentally reported Zn-Cu compounds can be replicated, especially the structure of R32 CuZn5 is first discovered which possesses the lowest formation energy of -0.050 eV per atom. Furthermore, the simulated X-ray diffraction pattern matches perfectly with the experimental ones. By formulating 342 potential electrochemical reactions based on the binary compounds, the Pourbaix diagrams for Zn-Cu alloys are constructed to clarify the fundamental competition between different phases and ions. The calculated equilibrium potential of CuZn5 is higher than that of Zn through the forward reaction Zn + CuZn5 reversible arrow CuZn5 + Zn2+ + 2e(-), resulting in microcell formation owing to the stronger charge density localization in Zn compared to CuZn5. The presence of chlorine accelerates the corrosion of Zn through the reaction Zn + CuZn5 + 6Cl(-) + 6H(2)O reversible arrow Cu + 6ZnOHCl + 6H(+) + 12e(-), where the formation of ZnOHCl disrupts the ZnO passive film and expands the corrosion pH range from 9.2 to 8.8. Our findings reveal an accurate quantitative corrosion mechanism for Zn-Cu alloys, providing an effective pathway to investigate the corrosion resistance of biodegradable alloys.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
1463-9084
Svazek periodika
26
Číslo periodika v rámci svazku
35
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
23010-23022
Kód UT WoS článku
001295535900001
EID výsledku v databázi Scopus
2-s2.0-85201877877