A cross-diffusion system modeling rivaling gangs: Global existence of bounded solutions and FCT stabilization for numerical simulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489223" target="_blank" >RIV/00216208:11320/24:10489223 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CpZ93RwjNh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CpZ93RwjNh</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202524500349" target="_blank" >10.1142/S0218202524500349</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A cross-diffusion system modeling rivaling gangs: Global existence of bounded solutions and FCT stabilization for numerical simulation
Popis výsledku v původním jazyce
In this paper, we study a gang territorial model consisting of two parabolic and two ordinary differential equations, where a taxis-type mechanism models that the two rivaling gangs are repelled by each other's graffiti. Our main analytical finding shows the existence of global, bounded classical solutions. By making use of quantitative global estimates, we prove that these solutions converge to homogeneous steady states if the initial data are sufficiently small. Moreover, we perform numerical experiments which show that for different choices of parameters, the system may become diffusion- or convection-dominated, where in the former case the solutions converge toward constant steady states while in the latter case nontrivial asymptotic behavior such as segregation is observed. In order to perform these experiments, we apply a nonlinear finite element flux-corrected transport method (FEM-FCT) which is positivity-preserving. Then we treat the nonlinearities in both the system and the proposed nonlinear scheme simultaneously using fixed-point iteration.
Název v anglickém jazyce
A cross-diffusion system modeling rivaling gangs: Global existence of bounded solutions and FCT stabilization for numerical simulation
Popis výsledku anglicky
In this paper, we study a gang territorial model consisting of two parabolic and two ordinary differential equations, where a taxis-type mechanism models that the two rivaling gangs are repelled by each other's graffiti. Our main analytical finding shows the existence of global, bounded classical solutions. By making use of quantitative global estimates, we prove that these solutions converge to homogeneous steady states if the initial data are sufficiently small. Moreover, we perform numerical experiments which show that for different choices of parameters, the system may become diffusion- or convection-dominated, where in the former case the solutions converge toward constant steady states while in the latter case nontrivial asymptotic behavior such as segregation is observed. In order to perform these experiments, we apply a nonlinear finite element flux-corrected transport method (FEM-FCT) which is positivity-preserving. Then we treat the nonlinearities in both the system and the proposed nonlinear scheme simultaneously using fixed-point iteration.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-01591S" target="_blank" >GA22-01591S: Matematická teorie a numerická analýza rovnic vazkých newtonovských stlačitelných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
1793-6314
Svazek periodika
34
Číslo periodika v rámci svazku
09
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
41
Strana od-do
1739-1779
Kód UT WoS článku
001260458100002
EID výsledku v databázi Scopus
2-s2.0-85197907690