Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489225" target="_blank" >RIV/00216208:11320/24:10489225 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LkKFRd9jpb" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LkKFRd9jpb</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M1488934" target="_blank" >10.1137/22M1488934</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations
Popis výsledku v původním jazyce
Convection -diffusion -reaction equations model the conservation of scalar quantities. From the analytic point of view, solutions of these equations satisfy, under certain conditions, maximum principles, which represent physical bounds of the solution. That the same bounds are respected by numerical approximations of the solution is often of utmost importance in practice. The mathematical formulation of this property, which contributes to the physical consistency of a method, is called the discrete maximum principle (DMP). In many applications, convection dominates diffusion by several orders of magnitude. It is well known that standard discretizations typically do not satisfy the DMP in this convectiondominated regime. In fact, in this case it turns out to be a challenging problem to construct discretizations that, on the one hand, respect the DMP and, on the other hand, compute accurate solutions. This paper presents a survey on finite element methods, with the main focus on the convection -dominated regime, that satisfy a local or a global DMP. The concepts of the underlying numerical analysis are discussed. The survey reveals that for the steady-state problem there are only a few discretizations, all of them nonlinear, that at the same time both satisfy the DMP and compute reasonably accurate solutions, e.g., algebraically stabilized schemes. Moreover, most of these discretizations have been developed in recent years, showing the enormous progress that has been achieved lately. Similarly, methods based on algebraic stabilization, both nonlinear and linear, are currently the only finite element methods that combine the satisfaction of the global DMP and accurate numerical results for the evolutionary equations in the convection -dominated scenario.
Název v anglickém jazyce
Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations
Popis výsledku anglicky
Convection -diffusion -reaction equations model the conservation of scalar quantities. From the analytic point of view, solutions of these equations satisfy, under certain conditions, maximum principles, which represent physical bounds of the solution. That the same bounds are respected by numerical approximations of the solution is often of utmost importance in practice. The mathematical formulation of this property, which contributes to the physical consistency of a method, is called the discrete maximum principle (DMP). In many applications, convection dominates diffusion by several orders of magnitude. It is well known that standard discretizations typically do not satisfy the DMP in this convectiondominated regime. In fact, in this case it turns out to be a challenging problem to construct discretizations that, on the one hand, respect the DMP and, on the other hand, compute accurate solutions. This paper presents a survey on finite element methods, with the main focus on the convection -dominated regime, that satisfy a local or a global DMP. The concepts of the underlying numerical analysis are discussed. The survey reveals that for the steady-state problem there are only a few discretizations, all of them nonlinear, that at the same time both satisfy the DMP and compute reasonably accurate solutions, e.g., algebraically stabilized schemes. Moreover, most of these discretizations have been developed in recent years, showing the enormous progress that has been achieved lately. Similarly, methods based on algebraic stabilization, both nonlinear and linear, are currently the only finite element methods that combine the satisfaction of the global DMP and accurate numerical results for the evolutionary equations in the convection -dominated scenario.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-01591S" target="_blank" >GA22-01591S: Matematická teorie a numerická analýza rovnic vazkých newtonovských stlačitelných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Review
ISSN
0036-1445
e-ISSN
1095-7200
Svazek periodika
66
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
86
Strana od-do
3-88
Kód UT WoS článku
001222180700006
EID výsledku v databázi Scopus
2-s2.0-85191833722