Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Molecular simulation approach for NO3--N and NH4+-N sorption and desorption in the pores of palygorskite and sepiolite clay minerals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490074" target="_blank" >RIV/00216208:11320/24:10490074 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=T1Mi5JJLud" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=T1Mi5JJLud</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.clay.2024.107371" target="_blank" >10.1016/j.clay.2024.107371</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Molecular simulation approach for NO3--N and NH4+-N sorption and desorption in the pores of palygorskite and sepiolite clay minerals

  • Popis výsledku v původním jazyce

    Molecular simulations methods were applied to determine the developed interactions between (NO3- ) or ammonium (NH4+) and fibrous clay minerals as adsorbents. Both nitrogenous pollutants can contribute to eutrophication, rendering the research of their remediation crucial. Specifically, the ribbon- like structures of palygorskite and sepiolite, as well as the molecular structure of the nitrogenous ions and water molecules, were built in Materials Studio software and analyzed via the minimum energies by molecular mechanics and dynamics (MD) methods. It was revealed that both nitrogenous ions were mainly interacted with the water molecules presented in the pores of palygorskite and sepiolite, yielding the mutual electrostatic interactions the dominant ones. Nevertheless, the dimensions of both clay pores were crucial parameter for the developed bonds strength, especially in NH4+ case. Based on MD calculation results, the inner size determines the palygorskite and sepiolite removal capacity and subsequently desorption efficiency of NH4+ ions. Specifically, according to obtained binding energies the larger sepiolite pores facilitated the interactions with two NO3- molecules (-1098 kcal/mol) instead of one NO3- molecule (-42 kcal/mol) with palygorskite, while deeper NH4+ penetration and stronger bonding could be achieved only on sepiolite, explaining the low and stead NH4+ release rate compared to palygorskite. The calculated results were compared to previously publish experimental data of our research team and presented a good correlation. This study highlights the importance and suitability of molecular simulations contribution to evaluate and enlighten the insight processes of adsorption studies which could not be experimentally proven with the fibrous clay minerals.

  • Název v anglickém jazyce

    Molecular simulation approach for NO3--N and NH4+-N sorption and desorption in the pores of palygorskite and sepiolite clay minerals

  • Popis výsledku anglicky

    Molecular simulations methods were applied to determine the developed interactions between (NO3- ) or ammonium (NH4+) and fibrous clay minerals as adsorbents. Both nitrogenous pollutants can contribute to eutrophication, rendering the research of their remediation crucial. Specifically, the ribbon- like structures of palygorskite and sepiolite, as well as the molecular structure of the nitrogenous ions and water molecules, were built in Materials Studio software and analyzed via the minimum energies by molecular mechanics and dynamics (MD) methods. It was revealed that both nitrogenous ions were mainly interacted with the water molecules presented in the pores of palygorskite and sepiolite, yielding the mutual electrostatic interactions the dominant ones. Nevertheless, the dimensions of both clay pores were crucial parameter for the developed bonds strength, especially in NH4+ case. Based on MD calculation results, the inner size determines the palygorskite and sepiolite removal capacity and subsequently desorption efficiency of NH4+ ions. Specifically, according to obtained binding energies the larger sepiolite pores facilitated the interactions with two NO3- molecules (-1098 kcal/mol) instead of one NO3- molecule (-42 kcal/mol) with palygorskite, while deeper NH4+ penetration and stronger bonding could be achieved only on sepiolite, explaining the low and stead NH4+ release rate compared to palygorskite. The calculated results were compared to previously publish experimental data of our research team and presented a good correlation. This study highlights the importance and suitability of molecular simulations contribution to evaluate and enlighten the insight processes of adsorption studies which could not be experimentally proven with the fibrous clay minerals.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Clay Science

  • ISSN

    0169-1317

  • e-ISSN

    1872-9053

  • Svazek periodika

    254

  • Číslo periodika v rámci svazku

    254

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    8

  • Strana od-do

    107371

  • Kód UT WoS článku

    001230236300001

  • EID výsledku v databázi Scopus

    2-s2.0-85190249611