Erdős-Szekeres-Type Problems in the Real Projective Plane
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490825" target="_blank" >RIV/00216208:11320/24:10490825 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FiPP~2wWg6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FiPP~2wWg6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-024-00691-5" target="_blank" >10.1007/s00454-024-00691-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Erdős-Szekeres-Type Problems in the Real Projective Plane
Popis výsledku v původním jazyce
We consider point sets in the real projective plane RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} and explore variants of classical extremal problems about planar point sets in this setting, with a main focus on Erd & odblac;s-Szekeres-type problems. We provide asymptotically tight bounds for a variant of the Erd & odblac;s-Szekeres theorem about point sets in convex position in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document}, which was initiated by Harborth and M & ouml;ller in 1994. The notion of convex position in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} agrees with the definition of convex sets introduced by Steinitz in 1913. For k >= 3documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k ge 3$$end{document}, an (affine) k-hole in a finite set S subset of R2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$S subseteq {mathbb {R}}<^>2$$end{document} is a set of k points from S in convex position with no point of S in the interior of their convex hull. After introducing a new notion of k-holes for points sets from RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document}, called projective k-holes, we find arbitrarily large finite sets of points from RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} with no projective 8-holes, providing an analogue of a classical planar construction by Horton from 1983. We also prove that they contain only quadratically many projective k-holes for k <= 7documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k le 7$$end{document}. On the other hand, we show that the number of k-holes can be substantially larger in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} than in R2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathbb {R}}<^>2$$end{document} by constructing, for every k is an element of{3,& ctdot;,6}documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k in {3,dots ,6}$$end{document}, sets of n points from R2 subset of RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathbb {R}}<^>2 subset {{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} with Omega(n3-3/5k)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$Omega (n<^>{3-3/5k})$$end{document} projective k-holes and only O(n2)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$O(n<^>2)$$end{document} affine k-holes. Last but not least, we prove several other results, for example about projective holes in random point sets in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} and about some algorithmic aspects. The study of extremal problems about point sets in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} opens a new area of research, which we support by posing several open problems.
Název v anglickém jazyce
Erdős-Szekeres-Type Problems in the Real Projective Plane
Popis výsledku anglicky
We consider point sets in the real projective plane RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} and explore variants of classical extremal problems about planar point sets in this setting, with a main focus on Erd & odblac;s-Szekeres-type problems. We provide asymptotically tight bounds for a variant of the Erd & odblac;s-Szekeres theorem about point sets in convex position in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document}, which was initiated by Harborth and M & ouml;ller in 1994. The notion of convex position in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} agrees with the definition of convex sets introduced by Steinitz in 1913. For k >= 3documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k ge 3$$end{document}, an (affine) k-hole in a finite set S subset of R2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$S subseteq {mathbb {R}}<^>2$$end{document} is a set of k points from S in convex position with no point of S in the interior of their convex hull. After introducing a new notion of k-holes for points sets from RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document}, called projective k-holes, we find arbitrarily large finite sets of points from RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} with no projective 8-holes, providing an analogue of a classical planar construction by Horton from 1983. We also prove that they contain only quadratically many projective k-holes for k <= 7documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k le 7$$end{document}. On the other hand, we show that the number of k-holes can be substantially larger in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} than in R2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathbb {R}}<^>2$$end{document} by constructing, for every k is an element of{3,& ctdot;,6}documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k in {3,dots ,6}$$end{document}, sets of n points from R2 subset of RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathbb {R}}<^>2 subset {{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} with Omega(n3-3/5k)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$Omega (n<^>{3-3/5k})$$end{document} projective k-holes and only O(n2)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$O(n<^>2)$$end{document} affine k-holes. Last but not least, we prove several other results, for example about projective holes in random point sets in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} and about some algorithmic aspects. The study of extremal problems about point sets in RP2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${{,mathrm{{mathbb {R}}{mathcal {P}}<^>2},}}$$end{document} opens a new area of research, which we support by posing several open problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-32817S" target="_blank" >GA21-32817S: Algoritmické, strukturální a složitostní aspekty geometrických konfigurací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
1432-0444
Svazek periodika
72
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
34
Strana od-do
1545-1578
Kód UT WoS článku
001308255600001
EID výsledku v databázi Scopus
2-s2.0-85203307226