Fast and exact fixed-radius neighbor search based on sorting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491220" target="_blank" >RIV/00216208:11320/24:10491220 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pJtICrozOZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pJtICrozOZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj-cs.1929" target="_blank" >10.7717/peerj-cs.1929</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast and exact fixed-radius neighbor search based on sorting
Popis výsledku v původním jazyce
Fixed -radius near neighbor search is a fundamental data operation that retrieves all data points within a user -specified distance to a query point. There are efficient algorithms that can provide fast approximate query responses, but they often have a very compute -intensive indexing phase and require careful parameter tuning. Therefore, exact brute force and tree -based search methods are still widely used. Here we propose a new fixed -radius near neighbor search method, called SNN, that significantly improves over brute force and tree -based methods in terms of index and query time, provably returns exact results, and requires no parameter tuning. SNN exploits a sorting of the data points by their first principal component to prune the query search space. Further speedup is gained from an efficient implementation using high-level basic linear algebra subprograms (BLAS). We provide theoretical analysis of our method and demonstrate its practical performance when used standalone and when applied within the DBSCAN clustering algorithm.
Název v anglickém jazyce
Fast and exact fixed-radius neighbor search based on sorting
Popis výsledku anglicky
Fixed -radius near neighbor search is a fundamental data operation that retrieves all data points within a user -specified distance to a query point. There are efficient algorithms that can provide fast approximate query responses, but they often have a very compute -intensive indexing phase and require careful parameter tuning. Therefore, exact brute force and tree -based search methods are still widely used. Here we propose a new fixed -radius near neighbor search method, called SNN, that significantly improves over brute force and tree -based methods in terms of index and query time, provably returns exact results, and requires no parameter tuning. SNN exploits a sorting of the data points by their first principal component to prune the query search space. Further speedup is gained from an efficient implementation using high-level basic linear algebra subprograms (BLAS). We provide theoretical analysis of our method and demonstrate its practical performance when used standalone and when applied within the DBSCAN clustering algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PeerJ Computer Science
ISSN
2376-5992
e-ISSN
2376-5992
Svazek periodika
10
Číslo periodika v rámci svazku
March 29, 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
e1929
Kód UT WoS článku
001194752800001
EID výsledku v databázi Scopus
2-s2.0-85190374252