Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Speed-Robust Scheduling Revisited

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491728" target="_blank" >RIV/00216208:11320/24:10491728 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8" target="_blank" >https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8" target="_blank" >10.4230/LIPIcs.APPROX/RANDOM.2024.8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Speed-Robust Scheduling Revisited

  • Popis výsledku v původním jazyce

    Speed-robust scheduling is the following two-stage problem of scheduling n jobs on m uniformly related machines. In the first stage, the algorithm receives the value of m and the processing times of n jobs; it has to partition the jobs into b groups called bags. In the second stage, the machine speeds are revealed and the bags are assigned to the machines, i.e., the algorithm produces a schedule where all the jobs in the same bag are assigned to the same machine. The objective is to minimize the makespan (the length of the schedule). The algorithm is compared to the optimal schedule and it is called ρ-robust, if its makespan is always at most ρ times the optimal one. Our main result is an improved bound for equal-size jobs for b = m. We give an upper bound of 1.6. This improves previous bound of 1.8 and it is almost tight in the light of previous lower bound of 1.58. Second, for infinitesimally small jobs, we give tight upper and lower bounds for the case when b &gt;= m. This generalizes and simplifies the previous bounds for b = m. Finally, we introduce a new special case with relatively small jobs for which we give an algorithm whose robustness is close to that of infinitesimal jobs and thus gives better than 2-robust for a large class of inputs. (C) Josef Minařík and Jiří Sgall.

  • Název v anglickém jazyce

    Speed-Robust Scheduling Revisited

  • Popis výsledku anglicky

    Speed-robust scheduling is the following two-stage problem of scheduling n jobs on m uniformly related machines. In the first stage, the algorithm receives the value of m and the processing times of n jobs; it has to partition the jobs into b groups called bags. In the second stage, the machine speeds are revealed and the bags are assigned to the machines, i.e., the algorithm produces a schedule where all the jobs in the same bag are assigned to the same machine. The objective is to minimize the makespan (the length of the schedule). The algorithm is compared to the optimal schedule and it is called ρ-robust, if its makespan is always at most ρ times the optimal one. Our main result is an improved bound for equal-size jobs for b = m. We give an upper bound of 1.6. This improves previous bound of 1.8 and it is almost tight in the light of previous lower bound of 1.58. Second, for infinitesimally small jobs, we give tight upper and lower bounds for the case when b &gt;= m. This generalizes and simplifies the previous bounds for b = m. Finally, we introduce a new special case with relatively small jobs for which we give an algorithm whose robustness is close to that of infinitesimal jobs and thus gives better than 2-robust for a large class of inputs. (C) Josef Minařík and Jiří Sgall.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA24-10306S" target="_blank" >GA24-10306S: Nové výzvy proudových, online a kombinatorických algoritmů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-348-5

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    20

  • Strana od-do

  • Název nakladatele

    Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

  • Místo vydání

    Germany

  • Místo konání akce

    London

  • Datum konání akce

    28. 8. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku