A small angle X-ray scattering approach for investigating fuel cell catalyst degradation for both ex situ and in operando analyses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491983" target="_blank" >RIV/00216208:11320/24:10491983 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BpmHSL-Fjn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BpmHSL-Fjn</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijhydene.2024.01.261" target="_blank" >10.1016/j.ijhydene.2024.01.261</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A small angle X-ray scattering approach for investigating fuel cell catalyst degradation for both ex situ and in operando analyses
Popis výsledku v původním jazyce
Detailed multi-technique characterization of catalyst layer degradation is fundamental for improving catalyst stability and performances in Proton Exchange Membrane Fuel Cells (PEMFCs), and Small Angle X -Ray Scattering (SAXS) coupled to chemical and/or electrochemical analysis can provide important insights of processes involved in catalyst coarsening. In this extent, we present an approach to SAXS analysis able to describe all of the layers composing the Membrane Electrode Assembly (MEA): electrolyte, catalyst support, catalyst nanoparticles, and gas diffusion layers. This approach was used to compare morphological evolution of small clusters formed by catalyst nanoparticles in pristine and aged MEAs in both ex situ and in operando conditions, on a standard SAXS beamline, without exploiting the advantages of anomalous SAXS. Twin MEAs were aged with two different types of Accelerated Stress Tests (AST): one addressed to the catalyst support (s-AST) and one targeting the catalyst layer (c-AST). Limited growth of catalyst nanoparticle size was found when running s-AST, while remarkable evolution was revealed once applying c-AST. Such a difference was mainly reconducted to the disconnection of catalyst nanoparticles from the electrical paths, as supported by analysis of specific Electrochemically Active Surface Area (ECSA). In both cases, the small clusters were found becoming more compact after AST were run.
Název v anglickém jazyce
A small angle X-ray scattering approach for investigating fuel cell catalyst degradation for both ex situ and in operando analyses
Popis výsledku anglicky
Detailed multi-technique characterization of catalyst layer degradation is fundamental for improving catalyst stability and performances in Proton Exchange Membrane Fuel Cells (PEMFCs), and Small Angle X -Ray Scattering (SAXS) coupled to chemical and/or electrochemical analysis can provide important insights of processes involved in catalyst coarsening. In this extent, we present an approach to SAXS analysis able to describe all of the layers composing the Membrane Electrode Assembly (MEA): electrolyte, catalyst support, catalyst nanoparticles, and gas diffusion layers. This approach was used to compare morphological evolution of small clusters formed by catalyst nanoparticles in pristine and aged MEAs in both ex situ and in operando conditions, on a standard SAXS beamline, without exploiting the advantages of anomalous SAXS. Twin MEAs were aged with two different types of Accelerated Stress Tests (AST): one addressed to the catalyst support (s-AST) and one targeting the catalyst layer (c-AST). Limited growth of catalyst nanoparticle size was found when running s-AST, while remarkable evolution was revealed once applying c-AST. Such a difference was mainly reconducted to the disconnection of catalyst nanoparticles from the electrical paths, as supported by analysis of specific Electrochemically Active Surface Area (ECSA). In both cases, the small clusters were found becoming more compact after AST were run.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Hydrogen Energy
ISSN
0360-3199
e-ISSN
1879-3487
Svazek periodika
58
Číslo periodika v rámci svazku
Mar 8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
1673-1681
Kód UT WoS článku
001181765800001
EID výsledku v databázi Scopus
2-s2.0-85185557949