Uniqueness of Galilean and Carrollian limits of gravitational theories and application to higher derivative gravity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491992" target="_blank" >RIV/00216208:11320/24:10491992 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nKXmw3MF~v" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nKXmw3MF~v</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.109.084019" target="_blank" >10.1103/PhysRevD.109.084019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Uniqueness of Galilean and Carrollian limits of gravitational theories and application to higher derivative gravity
Popis výsledku v původním jazyce
We show that the seemingly different methods used to derive non-Lorentzian (Galilean and Carrollian) gravitational theories from Lorentzian ones are equivalent. Specifically, the pre-nonrelativistic and the preultralocal parametrizations can be constructed from the gauging of the Galilei and Carroll algebras, respectively. Also, the pre-ultralocal approach of taking the Carrollian limit is equivalent to performing the Arnowitt-Deser-Misner decomposition and then setting the signature of the Lorentzian manifold to zero. We use this uniqueness to write a generic expansion for the curvature tensors and construct Galilean and Carrollian limits of all metric theories of gravity of finite order ranging from the f(R) gravity to a completely generic higher derivative theory, the f(g mu nu, R mu nu sigma rho, del mu) gravity. We present an algorithm for calculation of the nth order of the Galilean and Carrollian expansions that transforms this problem into a constrained optimization problem. We also derive the condition under which a gravitational theory becomes a modification of general relativity in both limits simultaneously.
Název v anglickém jazyce
Uniqueness of Galilean and Carrollian limits of gravitational theories and application to higher derivative gravity
Popis výsledku anglicky
We show that the seemingly different methods used to derive non-Lorentzian (Galilean and Carrollian) gravitational theories from Lorentzian ones are equivalent. Specifically, the pre-nonrelativistic and the preultralocal parametrizations can be constructed from the gauging of the Galilei and Carroll algebras, respectively. Also, the pre-ultralocal approach of taking the Carrollian limit is equivalent to performing the Arnowitt-Deser-Misner decomposition and then setting the signature of the Lorentzian manifold to zero. We use this uniqueness to write a generic expansion for the curvature tensors and construct Galilean and Carrollian limits of all metric theories of gravity of finite order ranging from the f(R) gravity to a completely generic higher derivative theory, the f(g mu nu, R mu nu sigma rho, del mu) gravity. We present an algorithm for calculation of the nth order of the Galilean and Carrollian expansions that transforms this problem into a constrained optimization problem. We also derive the condition under which a gravitational theory becomes a modification of general relativity in both limits simultaneously.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
109
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
084019
Kód UT WoS článku
001224037100004
EID výsledku v databázi Scopus
2-s2.0-85189980320