Thermal investigation of Pd interface with molybdenum disulfide
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492088" target="_blank" >RIV/00216208:11320/24:10492088 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=unCc_x0Rp6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=unCc_x0Rp6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpcs.2024.112018" target="_blank" >10.1016/j.jpcs.2024.112018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal investigation of Pd interface with molybdenum disulfide
Popis výsledku v původním jazyce
The thermal stability of molybdenum disulfide (MoS2) films, and particularly of the 1T-MoS2 metallic phase, plays a crucial role in their applicability across diverse technological fields. In this research, we successfully achieved a phase transition of multilayer MoS2 nanosheets from the semiconducting 2H phase to the metallic 1T phase through Pd substitution of Mo atoms on non-stoichiometric (sulfur-rich) MoS2 substrates and MoS2 hybrids with reduced graphene oxide (MoS2-rGO). This investigation involved studying the thermal stability of MoS2 thin films with mixed 1T-2H phases, up to 500 degrees C, in an ultra-high vacuum (UHV) environment. Our findings indicate that the 1T phase transforms to the 2H semiconducting stable phase at different temperatures, depending on the surface chemistry. In sulfur-rich substrates, the 1T phase remains present up to approximately 400 degrees C, while it vanishes on the stoichiometric MoS2-rGO films. Notably, enhanced thermal stability of the 1T phase is achieved with a sulfur surplus, regardless of the presence of rGO. Furthermore, during annealing, we observed Pd sintering, accompanied by a chemical state change from metallic Pd0 to Pd2+. These results elucidate the stability of 1T-MoS2 within an acceptable temperature range for the catalytic process and energy applications involving MoS2.
Název v anglickém jazyce
Thermal investigation of Pd interface with molybdenum disulfide
Popis výsledku anglicky
The thermal stability of molybdenum disulfide (MoS2) films, and particularly of the 1T-MoS2 metallic phase, plays a crucial role in their applicability across diverse technological fields. In this research, we successfully achieved a phase transition of multilayer MoS2 nanosheets from the semiconducting 2H phase to the metallic 1T phase through Pd substitution of Mo atoms on non-stoichiometric (sulfur-rich) MoS2 substrates and MoS2 hybrids with reduced graphene oxide (MoS2-rGO). This investigation involved studying the thermal stability of MoS2 thin films with mixed 1T-2H phases, up to 500 degrees C, in an ultra-high vacuum (UHV) environment. Our findings indicate that the 1T phase transforms to the 2H semiconducting stable phase at different temperatures, depending on the surface chemistry. In sulfur-rich substrates, the 1T phase remains present up to approximately 400 degrees C, while it vanishes on the stoichiometric MoS2-rGO films. Notably, enhanced thermal stability of the 1T phase is achieved with a sulfur surplus, regardless of the presence of rGO. Furthermore, during annealing, we observed Pd sintering, accompanied by a chemical state change from metallic Pd0 to Pd2+. These results elucidate the stability of 1T-MoS2 within an acceptable temperature range for the catalytic process and energy applications involving MoS2.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics and Chemistry of Solids
ISSN
0022-3697
e-ISSN
1879-2553
Svazek periodika
190
Číslo periodika v rámci svazku
Jul
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
112018
Kód UT WoS článku
001289132000001
EID výsledku v databázi Scopus
2-s2.0-85189020722