Carroll black holes in (A)dS spacetimes and their higher-derivative modifications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492398" target="_blank" >RIV/00216208:11320/24:10492398 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=N5BdXxvb0H" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=N5BdXxvb0H</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.110.084064" target="_blank" >10.1103/PhysRevD.110.084064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Carroll black holes in (A)dS spacetimes and their higher-derivative modifications
Popis výsledku v původním jazyce
We define the Carrollian black holes corresponding to the limit of Schwarzschild-(anti)de Sitter (A)dS black holes and its higher-derivative counterpart known as Schwarzschild-Bach-(A)dS black holes, which is also a static spherically symmetric vacuum solution of quadratic gravity. By analyzing the motion of massive particles in these geometries, we found that, in the case of Schwarzschild-(A)dS black hole, a (nearly) tangential particle from infinity will wind around the extremal surface with a finite number of windings depending on the impact parameter and the cosmological constant. In Schwarzschild-Bach-(A)dS black hole, a particle passing close enough to the extremal surface will have an infinite number of windings; hence, it will not escape to asymptotic infinity as in Schwarzschild-(A)dS black hole. We also calculate the thermodynamical quantities for such black holes and argue that it is analogous to an incompressible thermodynamical system with divergent entropy when the temperature goes to zero (in the strict Carroll limit). We then define a divergent specific heat that can be positive, negative, or zero.
Název v anglickém jazyce
Carroll black holes in (A)dS spacetimes and their higher-derivative modifications
Popis výsledku anglicky
We define the Carrollian black holes corresponding to the limit of Schwarzschild-(anti)de Sitter (A)dS black holes and its higher-derivative counterpart known as Schwarzschild-Bach-(A)dS black holes, which is also a static spherically symmetric vacuum solution of quadratic gravity. By analyzing the motion of massive particles in these geometries, we found that, in the case of Schwarzschild-(A)dS black hole, a (nearly) tangential particle from infinity will wind around the extremal surface with a finite number of windings depending on the impact parameter and the cosmological constant. In Schwarzschild-Bach-(A)dS black hole, a particle passing close enough to the extremal surface will have an infinite number of windings; hence, it will not escape to asymptotic infinity as in Schwarzschild-(A)dS black hole. We also calculate the thermodynamical quantities for such black holes and argue that it is analogous to an incompressible thermodynamical system with divergent entropy when the temperature goes to zero (in the strict Carroll limit). We then define a divergent specific heat that can be positive, negative, or zero.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
110
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
084064
Kód UT WoS článku
001344728000005
EID výsledku v databázi Scopus
2-s2.0-85208658437