Extremal Rotating BTZ Black Holes Cannot Be Dressed in (anti-)Self-Dual Maxwell Field
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492423" target="_blank" >RIV/00216208:11320/24:10492423 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZeHhLzgTQY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZeHhLzgTQY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/ptep/ptae160" target="_blank" >10.1093/ptep/ptae160</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extremal Rotating BTZ Black Holes Cannot Be Dressed in (anti-)Self-Dual Maxwell Field
Popis výsledku v původním jazyce
Under the (anti-)self-dual condition for orthonormal components of the Faraday tensor, the 3D Einstein-Maxwell system with a negative cosmological constant A admits a solution obtained by Kamata and Koikawa and later by Cataldo and Salgado in the most general form. Actually, Cl & eacute;ment first obtained this solution and interpreted it as a regular particle-like solution without horizon. Nevertheless, it has been erroneously stated in some literature that this Cl & eacute;ment-Cataldo-Salgado (CCS) solution, locally characterized by a single parameter, describes a black hole even in the charged case as it reduces to the extremal rotating Ba & ntilde;ados-Teitelboim-Zanelli (BTZ) solution in the vacuum limit and its curvature invariants are constant. In this paper, we supplement Cl & eacute;ment's interpretation by showing that there appears a parallelly propagated curvature singularity corresponding to an infinite affine parameter along spacelike geodesics at the location of the Killing horizon in the extremal rotating BTZ solution when the (anti-)self-dual Maxwell field is added. If the spatial coordinate 9 is periodic, closed timelike curves exist near the singularity. It is also shown that the CCS solution is of Cotton type N (in contrast to charged rotating BTZ black holes which are of type I away from the horizon), and the energy-momentum tensor of the Maxwell field is of Hawking-Ellis type II. The metric solves the Einstein- A equations also with a massless scalar field or a null dust fluid. We explicitly demonstrate that it belongs to the Kundt shear-free, nontwisting, and nonexpanding class of geometries, whereas extremal rotating BTZ black holes have expanding principal null directions. It means that the CCS metric represents the specific null (i.e. "radiative") Maxwell field generated by a singular source, rather than an extremal rotating BTZ black hole dressed in an (anti-)self-dual Maxwell field.
Název v anglickém jazyce
Extremal Rotating BTZ Black Holes Cannot Be Dressed in (anti-)Self-Dual Maxwell Field
Popis výsledku anglicky
Under the (anti-)self-dual condition for orthonormal components of the Faraday tensor, the 3D Einstein-Maxwell system with a negative cosmological constant A admits a solution obtained by Kamata and Koikawa and later by Cataldo and Salgado in the most general form. Actually, Cl & eacute;ment first obtained this solution and interpreted it as a regular particle-like solution without horizon. Nevertheless, it has been erroneously stated in some literature that this Cl & eacute;ment-Cataldo-Salgado (CCS) solution, locally characterized by a single parameter, describes a black hole even in the charged case as it reduces to the extremal rotating Ba & ntilde;ados-Teitelboim-Zanelli (BTZ) solution in the vacuum limit and its curvature invariants are constant. In this paper, we supplement Cl & eacute;ment's interpretation by showing that there appears a parallelly propagated curvature singularity corresponding to an infinite affine parameter along spacelike geodesics at the location of the Killing horizon in the extremal rotating BTZ solution when the (anti-)self-dual Maxwell field is added. If the spatial coordinate 9 is periodic, closed timelike curves exist near the singularity. It is also shown that the CCS solution is of Cotton type N (in contrast to charged rotating BTZ black holes which are of type I away from the horizon), and the energy-momentum tensor of the Maxwell field is of Hawking-Ellis type II. The metric solves the Einstein- A equations also with a massless scalar field or a null dust fluid. We explicitly demonstrate that it belongs to the Kundt shear-free, nontwisting, and nonexpanding class of geometries, whereas extremal rotating BTZ black holes have expanding principal null directions. It means that the CCS metric represents the specific null (i.e. "radiative") Maxwell field generated by a singular source, rather than an extremal rotating BTZ black hole dressed in an (anti-)self-dual Maxwell field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-05914S" target="_blank" >GA23-05914S: Pokročilé techniky aplikované na přesné prostoročasy s černými dírami a gravitačními vlnami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Progress of Theoretical and Experimental Physics
ISSN
2050-3911
e-ISSN
—
Svazek periodika
2024
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
24
Strana od-do
113E03
Kód UT WoS článku
001354714200001
EID výsledku v databázi Scopus
2-s2.0-85213374755