CUNI and LMU Submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492863" target="_blank" >RIV/00216208:11320/24:10492863 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2024.mrl-1.29/" target="_blank" >https://aclanthology.org/2024.mrl-1.29/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CUNI and LMU Submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval
Popis výsledku v původním jazyce
We present the joint CUNI and LMU submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval.The shared task objective was to explore how we can deploy modern methods in NLP in multi-lingual low-resource settings, tested on two sub-tasks: Named-entity recognition and question answering.Our solutions to the subtasks are based on data acquisition and model adaptation.We compare the performance of our submitted systems with the translate-test approachwhich proved to be the most useful in the previous edition of the shared task.Our results show that using more data as well as fine-tuning recent multilingual pre-trained models leads to considerable improvements over the translate-test baseline.Our code is available at https://github.com/ufal/mrl2024-multilingual-ir-shared-task.
Název v anglickém jazyce
CUNI and LMU Submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval
Popis výsledku anglicky
We present the joint CUNI and LMU submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval.The shared task objective was to explore how we can deploy modern methods in NLP in multi-lingual low-resource settings, tested on two sub-tasks: Named-entity recognition and question answering.Our solutions to the subtasks are based on data acquisition and model adaptation.We compare the performance of our submitted systems with the translate-test approachwhich proved to be the most useful in the previous edition of the shared task.Our results show that using more data as well as fine-tuning recent multilingual pre-trained models leads to considerable improvements over the translate-test baseline.Our code is available at https://github.com/ufal/mrl2024-multilingual-ir-shared-task.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)
ISBN
979-8-89176-184-1
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
357-364
Název nakladatele
Association for Computational Linguistics
Místo vydání
Kerrville, TX, USA
Místo konání akce
Miami, FL, USA
Datum konání akce
16. 11. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—