Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

GAATME: A Genetic Algorithm for Adversarial Translation Metrics Evaluation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492867" target="_blank" >RIV/00216208:11320/24:10492867 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2024.lrec-main.668/" target="_blank" >https://aclanthology.org/2024.lrec-main.668/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    GAATME: A Genetic Algorithm for Adversarial Translation Metrics Evaluation

  • Popis výsledku v původním jazyce

    Building on a recent method for decoding translation candidates from a Machine Translation (MT) model via a genetic algorithm, we modify it to generate adversarial translations to test and challenge MT evaluation metrics. The produced translations score very well in an arbitrary MT evaluation metric selected beforehand, despite containing serious, deliberately introduced errors. The method can be used to create adversarial test sets to analyze the biases and shortcomings of the metrics. We publish various such test sets for the Czech to English language pair, as well as the code to convert any parallel data into a similar adversarial test set.

  • Název v anglickém jazyce

    GAATME: A Genetic Algorithm for Adversarial Translation Metrics Evaluation

  • Popis výsledku anglicky

    Building on a recent method for decoding translation candidates from a Machine Translation (MT) model via a genetic algorithm, we modify it to generate adversarial translations to test and challenge MT evaluation metrics. The produced translations score very well in an arbitrary MT evaluation metric selected beforehand, despite containing serious, deliberately introduced errors. The method can be used to create adversarial test sets to analyze the biases and shortcomings of the metrics. We publish various such test sets for the Czech to English language pair, as well as the code to convert any parallel data into a similar adversarial test set.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

  • ISBN

    978-2-493-81410-4

  • ISSN

    2522-2686

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    7562-7569

  • Název nakladatele

    European Language Resources Association

  • Místo vydání

    Torino, Italy

  • Místo konání akce

    Torino, Italy

  • Datum konání akce

    22. 5. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku