Geometric re-meshing strategies to simulate contactless rebounds of elastic solids in fluids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492984" target="_blank" >RIV/00216208:11320/24:10492984 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RsAnonE2tm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RsAnonE2tm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cma.2024.116824" target="_blank" >10.1016/j.cma.2024.116824</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometric re-meshing strategies to simulate contactless rebounds of elastic solids in fluids
Popis výsledku v původním jazyce
The paper deals with the rebound of an elastic solid off a rigid wall of a container filled with an incompressible Newtonian fluid. Our study focuses on a collision-free bounce, meaning a rebound without topological contact between the elastic solid and the wall. This has the advantage of omitting any artificial bouncing law. In order to capture the contact-free rebound for very small viscosities an adaptive numerical scheme is introduced. The here -introduced scheme is based on a Glowinski time scheme and a localized arbitrary Lagrangian-Eulerian map on finite elements in space. The absence of topological contact requires that very thin liquid channels are solved with sufficient accuracy. It is achieved via newly developed geometrically driven adaptive strategies. Using the numerical scheme, we present here a collection of numerical experiments. A rebound is simulated in the absence of topological contacts. Its physical relevance is demonstrated as, with decreasing viscosities, a free rebound in a vacuum is approached. Further, we compare the dynamics with a second numerical scheme; a here -introduced adaptive purely Eulerian level -set method. The scheme produced the same dynamics for large viscosities. However, as it requires a much higher computational cost, small viscosities cannot be reached by this method. The experiments allow for a better understanding of the effect of fluids on the dynamics of elastic objects. Several observations are discussed, such as the amount of elastic and/or kinetic energy loss or the precise connection between the fluid pressure and the rebound of the solid.
Název v anglickém jazyce
Geometric re-meshing strategies to simulate contactless rebounds of elastic solids in fluids
Popis výsledku anglicky
The paper deals with the rebound of an elastic solid off a rigid wall of a container filled with an incompressible Newtonian fluid. Our study focuses on a collision-free bounce, meaning a rebound without topological contact between the elastic solid and the wall. This has the advantage of omitting any artificial bouncing law. In order to capture the contact-free rebound for very small viscosities an adaptive numerical scheme is introduced. The here -introduced scheme is based on a Glowinski time scheme and a localized arbitrary Lagrangian-Eulerian map on finite elements in space. The absence of topological contact requires that very thin liquid channels are solved with sufficient accuracy. It is achieved via newly developed geometrically driven adaptive strategies. Using the numerical scheme, we present here a collection of numerical experiments. A rebound is simulated in the absence of topological contacts. Its physical relevance is demonstrated as, with decreasing viscosities, a free rebound in a vacuum is approached. Further, we compare the dynamics with a second numerical scheme; a here -introduced adaptive purely Eulerian level -set method. The scheme produced the same dynamics for large viscosities. However, as it requires a much higher computational cost, small viscosities cannot be reached by this method. The experiments allow for a better understanding of the effect of fluids on the dynamics of elastic objects. Several observations are discussed, such as the amount of elastic and/or kinetic energy loss or the precise connection between the fluid pressure and the rebound of the solid.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LL2105" target="_blank" >LL2105: Analýza systémů parciálních diferenciálních rovnic popisujících kontakt mezi tekutinami a pevnými látkami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Methods in Applied Mechanics and Engineering
ISSN
0045-7825
e-ISSN
1879-2138
Svazek periodika
422
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
116824
Kód UT WoS článku
001181770700001
EID výsledku v databázi Scopus
2-s2.0-85184838525