Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Overhead Comparison of Instrumentation Frameworks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493046" target="_blank" >RIV/00216208:11320/24:10493046 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3629527.3652269" target="_blank" >https://doi.org/10.1145/3629527.3652269</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3629527.3652269" target="_blank" >10.1145/3629527.3652269</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Overhead Comparison of Instrumentation Frameworks

  • Popis výsledku v původním jazyce

    Application Performance Monitoring (APM) tools are used in the industry to gain insights, identify bottlenecks, and alert to issues related to software performance. The available APM tools generally differ in terms of functionality and licensing, but also in monitoring overhead, which should be minimized due to use in production deployments. One notable source of monitoring overhead is the instrumentation technology, which adds code to the system under test to obtain monitoring data. Because there are many ways how to instrument applications, we study the overhead of five different instrumentation technologies (AspectJ, ByteBuddy, DiSL, Javassist, and pure source code instrumentation) in the context of the Kieker open-source monitoring framework, using the MooBench benchmark as the system under test. Our experiments reveal that ByteBuddy, DiSL, Javassist, and source instrumentation achieve low monitoring overhead, and are therefore most suitable for achieving generally low overhead in the monitoring of production systems. However, the lowest overhead may be achieved by different technologies, depending on the configuration and the execution environment (e.g., the JVM implementation or the processor architecture). The overhead may also change due to modifications of the instrumentation technology. Consequently, if having the lowest possible overhead is crucial, it is best to analyze the overhead in concrete scenarios, with specific fractions of monitored methods and in the execution environment that accurately reflects the deployment environment. To this end, our extensions of the Kieker framework and the MooBench benchmark enable repeated assessment of monitoring overhead in different scenarios.

  • Název v anglickém jazyce

    Overhead Comparison of Instrumentation Frameworks

  • Popis výsledku anglicky

    Application Performance Monitoring (APM) tools are used in the industry to gain insights, identify bottlenecks, and alert to issues related to software performance. The available APM tools generally differ in terms of functionality and licensing, but also in monitoring overhead, which should be minimized due to use in production deployments. One notable source of monitoring overhead is the instrumentation technology, which adds code to the system under test to obtain monitoring data. Because there are many ways how to instrument applications, we study the overhead of five different instrumentation technologies (AspectJ, ByteBuddy, DiSL, Javassist, and pure source code instrumentation) in the context of the Kieker open-source monitoring framework, using the MooBench benchmark as the system under test. Our experiments reveal that ByteBuddy, DiSL, Javassist, and source instrumentation achieve low monitoring overhead, and are therefore most suitable for achieving generally low overhead in the monitoring of production systems. However, the lowest overhead may be achieved by different technologies, depending on the configuration and the execution environment (e.g., the JVM implementation or the processor architecture). The overhead may also change due to modifications of the instrumentation technology. Consequently, if having the lowest possible overhead is crucial, it is best to analyze the overhead in concrete scenarios, with specific fractions of monitored methods and in the execution environment that accurately reflects the deployment environment. To this end, our extensions of the Kieker framework and the MooBench benchmark enable repeated assessment of monitoring overhead in different scenarios.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Companion of the 2024 ACM/SPEC International Conference on Performance Engineering

  • ISBN

    979-8-4007-0445-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    249-256

  • Název nakladatele

    ACM

  • Místo vydání

    New York, NY, USA

  • Místo konání akce

    London

  • Datum konání akce

    5. 5. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001227617500050