On the Structure of Hamiltonian Graphs with Small Independence Number
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493336" target="_blank" >RIV/00216208:11320/24:10493336 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-63021-7_14" target="_blank" >https://doi.org/10.1007/978-3-031-63021-7_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-63021-7_14" target="_blank" >10.1007/978-3-031-63021-7_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Structure of Hamiltonian Graphs with Small Independence Number
Popis výsledku v původním jazyce
A Hamiltonian path (cycle) in a graph is a path (cycle, respectively) which passes through all of its vertices. The problems of deciding the existence of a Hamiltonian cycle (path) in an input graph are well known to be NP-complete, and restricted classes of graphs which allow for their polynomial-time solutions are intensively investigated. Until very recently the complexity was open even for graphs of independence number at most 3. A so far unpublished result of Jedlickova and Kratochvil [arXiv:2309.09228] shows that for every integer k, the problems of deciding the existence of a Hamiltonian path and cycle are polynomial-time solvable in graphs of independence number bounded by k. As a companion structural result, in this paper, we determine explicit obstacles for the existence of a Hamiltonian path for small values of k, namely for graphs of independence number 2, 3, and 4. Identifying these obstacles in an input graph yields alternative polynomial-time algorithms for deciding the existence of a Hamiltonian path with no large hidden multiplicative constants.
Název v anglickém jazyce
On the Structure of Hamiltonian Graphs with Small Independence Number
Popis výsledku anglicky
A Hamiltonian path (cycle) in a graph is a path (cycle, respectively) which passes through all of its vertices. The problems of deciding the existence of a Hamiltonian cycle (path) in an input graph are well known to be NP-complete, and restricted classes of graphs which allow for their polynomial-time solutions are intensively investigated. Until very recently the complexity was open even for graphs of independence number at most 3. A so far unpublished result of Jedlickova and Kratochvil [arXiv:2309.09228] shows that for every integer k, the problems of deciding the existence of a Hamiltonian path and cycle are polynomial-time solvable in graphs of independence number bounded by k. As a companion structural result, in this paper, we determine explicit obstacles for the existence of a Hamiltonian path for small values of k, namely for graphs of independence number 2, 3, and 4. Identifying these obstacles in an input graph yields alternative polynomial-time algorithms for deciding the existence of a Hamiltonian path with no large hidden multiplicative constants.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
COMBINATORIAL ALGORITHMS, IWOCA 2024
ISBN
978-3-031-63020-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
180-192
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Ischia
Datum konání akce
1. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001282050500014