A faster implementation of EQ and SE queries for switch-list representations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493959" target="_blank" >RIV/00216208:11320/24:10493959 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=haUKl4Exof" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=haUKl4Exof</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10472-023-09915-5" target="_blank" >10.1007/s10472-023-09915-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A faster implementation of EQ and SE queries for switch-list representations
Popis výsledku v původním jazyce
A switch-list representation (SLR) of a Boolean function is a compressed truth table representation of a Boolean function in which only (i) the function value of the first row in the truth table and (ii) a list of switches are stored. A switch is a Boolean vector whose function value differs from the value of the preceding Boolean vector in the truth table. The paper Cepek and ChromATIN SMALL LETTER Y WITH ACUTE (JAIR 2020) systematically studies the properties of SLRs and among other results gives polynomial-time algorithms for all standard queries investigated in the Knowledge Compilation Map introduced in Darwiche and Marquis (JAIR 2002). These queries include consistency check, validity check, clausal entailment check, implicant check, equivalence check, sentential entailment check, model counting, and model enumeration. The most difficult query supported in polynomial time by the smallest number of representation languages considered in the Knowledge Compilation Map is the sentential entailment check (of which the equivalence check is a special case). This query can be answered in polynomial time for SLRs, as shown in Cepek and ChromATIN SMALL LETTER Y WITH ACUTE (JAIR 2020). However, the query-answering algorithm is an indirect one: it first compiles both input SLRs into OBDDs (changing the order of variables for one of them if necessary) and then runs the sentential entailment check on the constructed OBDDs (both respecting the same order of variables) using an algorithm from the monograph by Wegener (2000). In this paper we present algorithms that answer both the equivalence and the sentential entailment query directly by manipulating the input SLRs (hence eliminating the compilation step into OBDD), which in both cases improves the time complexity of answering the query by a factor of n for input SLRs on n variables.
Název v anglickém jazyce
A faster implementation of EQ and SE queries for switch-list representations
Popis výsledku anglicky
A switch-list representation (SLR) of a Boolean function is a compressed truth table representation of a Boolean function in which only (i) the function value of the first row in the truth table and (ii) a list of switches are stored. A switch is a Boolean vector whose function value differs from the value of the preceding Boolean vector in the truth table. The paper Cepek and ChromATIN SMALL LETTER Y WITH ACUTE (JAIR 2020) systematically studies the properties of SLRs and among other results gives polynomial-time algorithms for all standard queries investigated in the Knowledge Compilation Map introduced in Darwiche and Marquis (JAIR 2002). These queries include consistency check, validity check, clausal entailment check, implicant check, equivalence check, sentential entailment check, model counting, and model enumeration. The most difficult query supported in polynomial time by the smallest number of representation languages considered in the Knowledge Compilation Map is the sentential entailment check (of which the equivalence check is a special case). This query can be answered in polynomial time for SLRs, as shown in Cepek and ChromATIN SMALL LETTER Y WITH ACUTE (JAIR 2020). However, the query-answering algorithm is an indirect one: it first compiles both input SLRs into OBDDs (changing the order of variables for one of them if necessary) and then runs the sentential entailment check on the constructed OBDDs (both respecting the same order of variables) using an algorithm from the monograph by Wegener (2000). In this paper we present algorithms that answer both the equivalence and the sentential entailment query directly by manipulating the input SLRs (hence eliminating the compilation step into OBDD), which in both cases improves the time complexity of answering the query by a factor of n for input SLRs on n variables.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Mathematics and Artificial Intelligence
ISSN
1012-2443
e-ISSN
1573-7470
Svazek periodika
92
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
1097-1112
Kód UT WoS článku
001129223400001
EID výsledku v databázi Scopus
2-s2.0-85179959830