The currently observed clumps cannot be the "direct" precursors of the currently observed open clusters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493962" target="_blank" >RIV/00216208:11320/24:10493962 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GFtFdvr-.O" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GFtFdvr-.O</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202451728" target="_blank" >10.1051/0004-6361/202451728</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The currently observed clumps cannot be the "direct" precursors of the currently observed open clusters
Popis výsledku v původním jazyce
We categorized clumps, embedded clusters, and open clusters and conducted a comparative analysis of their physical properties. Overall, the radii of open clusters are significantly larger than those of embedded clusters and clumps. The radii of embedded clusters are larger than those of clumps, which may be due to the expansion of embedded clusters. The open clusters have significantly higher masses than embedded clusters, by about one order of magnitude. Given the current mass distribution of clumps in the Milky Way, the evolutionary sequence from a single clump evolving into an embedded cluster and subsequently into an open cluster cannot account for the observed open clusters with old ages and high masses, which is also supported by N-body simulations of individual embedded clusters. To explain the mass and radius distributions of the observed open clusters, initial embedded clusters with masses higher than 3000 M-circle dot are necessary. However, the upper limit of the embedded cluster sample is less than 1000 M-circle dot, and only a few ATLASGAL clumps have a mass higher than 3000 M-circle dot. Thus, the currently observed clumps cannot be the "direct" precursors of the currently observed open clusters. If the Milky Way has a burst-like and time-dependent star formation history, the currently observed open clusters with old ages and high masses may come from massive clumps in the past. There is also a very real possibility that these open clusters originate from post-gas expulsion coalescence of multiple embedded clusters. We compared the separation of open clusters and the typical size of molecular clouds, and find that most molecular clouds may only form one open cluster, which supports the scenario of post-gas expulsion coalescence. Further study is necessary to distinguish between the different scenarios.
Název v anglickém jazyce
The currently observed clumps cannot be the "direct" precursors of the currently observed open clusters
Popis výsledku anglicky
We categorized clumps, embedded clusters, and open clusters and conducted a comparative analysis of their physical properties. Overall, the radii of open clusters are significantly larger than those of embedded clusters and clumps. The radii of embedded clusters are larger than those of clumps, which may be due to the expansion of embedded clusters. The open clusters have significantly higher masses than embedded clusters, by about one order of magnitude. Given the current mass distribution of clumps in the Milky Way, the evolutionary sequence from a single clump evolving into an embedded cluster and subsequently into an open cluster cannot account for the observed open clusters with old ages and high masses, which is also supported by N-body simulations of individual embedded clusters. To explain the mass and radius distributions of the observed open clusters, initial embedded clusters with masses higher than 3000 M-circle dot are necessary. However, the upper limit of the embedded cluster sample is less than 1000 M-circle dot, and only a few ATLASGAL clumps have a mass higher than 3000 M-circle dot. Thus, the currently observed clumps cannot be the "direct" precursors of the currently observed open clusters. If the Milky Way has a burst-like and time-dependent star formation history, the currently observed open clusters with old ages and high masses may come from massive clumps in the past. There is also a very real possibility that these open clusters originate from post-gas expulsion coalescence of multiple embedded clusters. We compared the separation of open clusters and the typical size of molecular clouds, and find that most molecular clouds may only form one open cluster, which supports the scenario of post-gas expulsion coalescence. Further study is necessary to distinguish between the different scenarios.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Svazek periodika
691
Číslo periodika v rámci svazku
listopad
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
11
Strana od-do
A293
Kód UT WoS článku
001361349200013
EID výsledku v databázi Scopus
2-s2.0-85210270922