On the pitfalls of diffuse interface methods in problems involving non-material interfaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10494326" target="_blank" >RIV/00216208:11320/24:10494326 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Pa3.GNuS30" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Pa3.GNuS30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2024.104725" target="_blank" >10.1016/j.ijnonlinmec.2024.104725</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the pitfalls of diffuse interface methods in problems involving non-material interfaces
Popis výsledku v původním jazyce
In this paper, we discuss the implications of applying traditional diffuse-interface techniques to problems involving mass flux across the interface such as the phase change front. In a simplified setting of stationary radial flow and linear viscous fluid, we confirm by analytical tools in the framework of Colombeau algebra that the numerical solutions to such problems approximate in fact modified physical problems that involve additional surface tension-like stress localized in the interfacial zone. The arising dynamical surface tension depends on the viscosity and density profiles within the interface. Expanding the setting to models of power-law fluids, we show that the dynamic surface tension vanishes in the limit of interfacial width going to zero for shear-thinning fluids. In contrast, for the shear-thickening case, the diffuse interface numerical solutions to the considered class of problems cannot be assigned any straightforward physical meaning, as the dynamic surface tension becomes unbounded with decreasing interfacial width and the traction jump in the limiting case cannot be even represented by any classical distribution. Consequently, our findings raise questions regarding the broad applicability of diffuse interface techniques in scenarios involving non-material interfaces, underscoring the necessity for further investigation.
Název v anglickém jazyce
On the pitfalls of diffuse interface methods in problems involving non-material interfaces
Popis výsledku anglicky
In this paper, we discuss the implications of applying traditional diffuse-interface techniques to problems involving mass flux across the interface such as the phase change front. In a simplified setting of stationary radial flow and linear viscous fluid, we confirm by analytical tools in the framework of Colombeau algebra that the numerical solutions to such problems approximate in fact modified physical problems that involve additional surface tension-like stress localized in the interfacial zone. The arising dynamical surface tension depends on the viscosity and density profiles within the interface. Expanding the setting to models of power-law fluids, we show that the dynamic surface tension vanishes in the limit of interfacial width going to zero for shear-thinning fluids. In contrast, for the shear-thickening case, the diffuse interface numerical solutions to the considered class of problems cannot be assigned any straightforward physical meaning, as the dynamic surface tension becomes unbounded with decreasing interfacial width and the traction jump in the limiting case cannot be even represented by any classical distribution. Consequently, our findings raise questions regarding the broad applicability of diffuse interface techniques in scenarios involving non-material interfaces, underscoring the necessity for further investigation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-20388S" target="_blank" >GA22-20388S: Vývoj vnějších slupek ledových měsíců z pohledu numerického modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Non-Linear Mechanics
ISSN
0020-7462
e-ISSN
1878-5638
Svazek periodika
162
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
104725
Kód UT WoS článku
001298141100001
EID výsledku v databázi Scopus
2-s2.0-85190497365