Deflection of light rays in a moving medium around a spherically symmetric gravitating object
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10495248" target="_blank" >RIV/00216208:11320/24:10495248 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mxOoD6LyFV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mxOoD6LyFV</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.109.124024" target="_blank" >10.1103/PhysRevD.109.124024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deflection of light rays in a moving medium around a spherically symmetric gravitating object
Popis výsledku v původním jazyce
In most analytical studies of light ray propagation in curved spacetimes around a gravitating object surrounded by a medium, it is assumed that the medium is a cold nonmagnetized plasma. The distinctive feature of this environment is that the equations of motion of the rays are independent of the plasma velocity, which, however, is not the case in other media. In this paper, we consider the deflection of light rays propagating near a spherically symmetric gravitating object in a moving dispersive medium given by a general refractive index. The deflection is studied when the motion of the medium is defined either as a radially falling onto a gravitating object (e.g., black hole), or rotating in the equatorial plane. For both cases the deflection angles are obtained. These examples demonstrate that fully analytic expressions can be obtained if the Hamiltonian for the rays takes a rather general form as a polynomial in a given momentum component. The general expressions are further applied to three specific choices of refractive indices, and these cases are compared. Furthermore, the light rays propagating around a gravitating object surrounded by a generally moving medium are further studied as a small perturbation of the cold plasma model. The deflection angle formula is hence expressed as a sum of zeroth and first order components, where the zeroth order term corresponds to the known cold plasma case, and the first order correction can be interpreted as caused by small difference in the refractive index compared to the cold plasma. The results presented in this paper allow to describe the effects caused by the motion of a medium and thus go beyond cold nonmagnetized plasma model.
Název v anglickém jazyce
Deflection of light rays in a moving medium around a spherically symmetric gravitating object
Popis výsledku anglicky
In most analytical studies of light ray propagation in curved spacetimes around a gravitating object surrounded by a medium, it is assumed that the medium is a cold nonmagnetized plasma. The distinctive feature of this environment is that the equations of motion of the rays are independent of the plasma velocity, which, however, is not the case in other media. In this paper, we consider the deflection of light rays propagating near a spherically symmetric gravitating object in a moving dispersive medium given by a general refractive index. The deflection is studied when the motion of the medium is defined either as a radially falling onto a gravitating object (e.g., black hole), or rotating in the equatorial plane. For both cases the deflection angles are obtained. These examples demonstrate that fully analytic expressions can be obtained if the Hamiltonian for the rays takes a rather general form as a polynomial in a given momentum component. The general expressions are further applied to three specific choices of refractive indices, and these cases are compared. Furthermore, the light rays propagating around a gravitating object surrounded by a generally moving medium are further studied as a small perturbation of the cold plasma model. The deflection angle formula is hence expressed as a sum of zeroth and first order components, where the zeroth order term corresponds to the known cold plasma case, and the first order correction can be interpreted as caused by small difference in the refractive index compared to the cold plasma. The results presented in this paper allow to describe the effects caused by the motion of a medium and thus go beyond cold nonmagnetized plasma model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
109
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
124024
Kód UT WoS článku
001248450300007
EID výsledku v databázi Scopus
2-s2.0-85195840191